【題目】已知為奇函數(shù), 與圖像關(guān)于對稱,若,則( )
A. 2 B. -2 C. 1 D. -1
【答案】B
【解析】為奇函數(shù),故的圖象關(guān)于原點對稱,而函數(shù)的圖象可由圖象向左平移個單位,再保持縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的倍得到,故的圖象關(guān)于點對稱,又與圖象關(guān)于對稱,故函數(shù)的圖象關(guān)于點對稱, ,即,故點,關(guān)于點對稱,故,故選B.
【方法點晴】本題主要考查函數(shù)的奇偶性、函數(shù)圖象的平移變換、放縮變換以及函數(shù)的對稱性,屬于難題題.函數(shù)圖像的確定除了可以直接描點畫出外,還常常利用基本初等函數(shù)圖像經(jīng)過“平移變換”“翻折變換”“對稱變換”“伸縮變換”得到,在變換過程中一定要注意變換順序.本題是利用函數(shù)的平移變換、放縮變換后根據(jù)對稱性解答的.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足:a2=5,a5+a7=26,數(shù)列{an}的前n項和為Sn .
(1)求an及Sn;
(2)設(shè){bn﹣an}是首項為1,公比為3的等比數(shù)列,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,CA=CB,M,N,P分別為AB,A1C1 , BC的中點.
求證:
(1)C1P∥平面MNC;
(2)平面MNC⊥平面ABB1A1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=f(x)的圖象過坐標(biāo)原點,其導(dǎo)函數(shù)f′(x)=6x﹣2,數(shù)列{an}前n項和為Sn , 點(n,Sn)(n∈N*)均在y=f(x)的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)設(shè) ,Tn是數(shù)列{bn}的前n項和,求當(dāng) 對所有n∈N*都成立m取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,GH是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在GH上的一點B的正北方向的A處建設(shè)一倉庫,設(shè)AB=ykm,并在公路北側(cè)建造邊長為xkm的正方形無頂中轉(zhuǎn)站CDEF(其中EF在GH上),現(xiàn)從倉庫A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且∠ABC=60°..
(1)求y關(guān)于x的函數(shù)解析式,并求出定義域;
(2)如果中轉(zhuǎn)站四堵圍墻造價為10萬元/km,兩條道路造價為30萬元/km,問:x取何值時,該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價M最低.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)若曲線與在公共點處有相同的切線,求實數(shù)的值;
(2)當(dāng)時,若曲線與在公共點處有相同的切線,求證:點唯一;
(3)若, ,且曲線與總存在公切線,求:正實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,E,F(xiàn)分別是AB,PB的中點
(1)求證:EF⊥CD;
(2)在平面PAD內(nèi)求一點G,使GF⊥平面PCB,并證明你的結(jié)論;
(3)求DB與平面DEF所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4cosxsin(x+ )+a的最大值為2.
(1)求a的值及f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com