已知橢圓的離心率為,橢圓短軸的一個端點與兩個焦

(Ⅰ)求橢圓的方程;

(Ⅱ)已知動直線與橢圓相交于、兩點. ①若線段中點的

橫坐標為,求斜率的值;②若點,求證:為定值.

 

【答案】

(Ⅰ)(Ⅱ)①②見解析

【解析】

試題分析:(Ⅰ)因為滿足,    ……2分

,解得,則橢圓方程為.           ……4分

(Ⅱ)①將代入中得

,                                          ……6分

,                                                      ……7分

因為中點的橫坐標為,所以,解得.          ……9分

②由(1)知,

所以             ……11分

                                ……12分

                                        ……14分

考點:本小題主要考查橢圓標準方程的求法、直線與橢圓的位置關系、韋達定理、中點坐標公式和向量的數(shù)量積的運算等綜合應用,考查學生綜合運用所學知識分析問題、解決問題的能力和邏輯推理、轉(zhuǎn)化能力和運算求解能力.

點評:直線與圓錐曲線的問題在高考中通常作為壓軸題出現(xiàn),難度較大,特別是運輸量比較大,要多加練習,牢固掌握.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的離心率為e,兩焦點分別為F1、F2,拋物線C以F1為頂點、F2為焦點,點P為拋物線和橢圓的一個交點,若e|PF2|=|PF1|,則e的值為(  )
A、
1
2
B、
2
2
C、
3
3
D、以上均不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的離心率為
1
2
,焦點是(-3,0),(3,0),則橢圓方程為( 。
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構成的“眼形”結(jié)構中,已知橢圓的離心率為
6
3
,直線l與圓O相切于點M,與橢圓C相交于兩點A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知橢圓的離心率為
2
2
,準線方程為x=±8,求這個橢圓的標準方程;
(2)假設你家訂了一份報紙,送報人可能在早上6:30-7:30之間把報紙送到你家,你父親離開家去工作的時間在早上7:00-8:00之間,請你求出父親在離開家前能得到報紙(稱為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點,M是橢圓上異于A,B的任意一點,已知橢圓的離心率為e,右準線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設直線AM交l于點P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點,求e.

查看答案和解析>>

同步練習冊答案