設(shè)數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045911196481.png)
滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045911211636.png)
,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240459112431216.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045911258346.png)
=
,
數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045911196481.png)
的前10項(xiàng)和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045911289399.png)
=
.
試題分析:根據(jù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240459112431216.png)
,可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045911336718.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045911352703.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045911383782.png)
,則有數(shù)列中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045911399631.png)
構(gòu)成以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045911414370.png)
為首項(xiàng),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045911430291.png)
為公比的等比數(shù)列,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045911445621.png)
;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045911461663.png)
構(gòu)成以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045911477396.png)
為首項(xiàng),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045911492336.png)
為公比的等比數(shù)列,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240459115081665.png)
.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(2013•湖北)已知等比數(shù)列{a
n}滿足:|a
2﹣a
3|=10,a
1a
2a
3=125.
(1)求數(shù)列{a
n}的通項(xiàng)公式;
(2)是否存在正整數(shù)m,使得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050246149749.png)
?若存在,求m的最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045128312481.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045128327387.png)
滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045128343550.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045128359551.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045128390384.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045128405433.png)
.
(1)求證:數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240451284211226.png)
是等差數(shù)列,并求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240451284371137.png)
的通項(xiàng)公式;
(2)設(shè)數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045128452858.png)
滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045128483671.png)
,對(duì)于任意給定的正整數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045128499661.png)
,是否存在正整數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240451285151048.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045128530300.png)
(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045128546588.png)
),使得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045128561467.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045128577600.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045128593712.png)
成等差數(shù)列?若存在,試用
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045128608399.png)
表示
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045128530300.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045128639658.png)
;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044052111456.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044052127471.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044052143431.png)
,已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044052158401.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044052174429.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044052236375.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044052236464.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044052267727.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044052283730.png)
(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044052299505.png)
).
(1)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044052314542.png)
的通項(xiàng)公式;
(2)求證:對(duì)任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044052330503.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044052345471.png)
為定值;
(3)設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044052361388.png)
為數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044052143431.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044052377297.png)
項(xiàng)和,若對(duì)任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044052299505.png)
,都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044052408907.png)
,求實(shí)數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044052423313.png)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052000602477.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052000633300.png)
項(xiàng)和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052000664389.png)
,且滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052000680630.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052000696530.png)
(1)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052000602477.png)
的通項(xiàng)公式;
(2)求證:
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在正項(xiàng)等比數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050650211481.png)
中,已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050650227557.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050650242421.png)
的最小值為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知等比數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045829091487.png)
為遞增數(shù)列,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045829122433.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045829154803.png)
,則數(shù)列的通項(xiàng)公式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045829169372.png)
_______.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
公比為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045545728291.png)
的等比數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045545759456.png)
的各項(xiàng)都是正數(shù),且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045545775555.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045545790338.png)
= ( 。
查看答案和解析>>