tan300°+tan405°+sin300°+cos405°=
 
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專題:計(jì)算題,三角函數(shù)的求值
分析:先利用誘導(dǎo)公式化成銳角三角函數(shù),然后求值.
解答: 解:tan300°+tan405°+sin300°+cos405°
=-tan60°+tan45°-sin60°+cos45°
=-
3
+1-
3
2
+
2
2

=1+
2
-3
3
2

故答案為:1+
2
-3
3
2
點(diǎn)評(píng):本題主要考查了誘導(dǎo)公式,解決本題的關(guān)鍵是正確使用誘導(dǎo)公式化成銳解三角函數(shù)進(jìn)行求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

短軸長(zhǎng)為2
5
,離心率e=
2
3
的橢圓的兩焦點(diǎn)為F1、F2,過(guò)F1作直線交橢圓于A、B兩點(diǎn),則△ABF2周長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}滿足S6=24,a10=-9.
(1)求{an}的通項(xiàng)公式;
(2)求{an}的前n項(xiàng)和Sn及使得Sn最大的序號(hào)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)計(jì)算(0.001) -
1
3
+27 
2
3
-(
1
4
 -
1
2
+(
1
9
-1.5
(2)已知函數(shù)f(x)是奇函數(shù),而且在(0,+∞)上是增函數(shù),判斷f(x)在(-∞,0)上是增函數(shù)還是減函數(shù),并證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校共有學(xué)生2000名,各年級(jí)男、女生人數(shù)如表所示,已知高一、高二年級(jí)共有女生753人.現(xiàn)用分層抽樣的方法在全校抽取64名學(xué)生,則應(yīng)在高三年級(jí)抽取的學(xué)生人數(shù)為( 。
高一年級(jí)高二年級(jí)高三年級(jí)
女生373xy
男生377370z
A、12人B、16人
C、18人D、24人

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求y=x+
1
2+x
(x>-2)的最小值;
(2)已知
1
x
+
9
y
=1
(x,y均為正),求x+y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一漁民從池塘中撈出30條魚(yú)做上標(biāo)記,然后放回池塘,將帶有標(biāo)記的魚(yú)完全混合于魚(yú)群中,十天后在從池塘里撈出50條,發(fā)現(xiàn)其中帶有標(biāo)記的魚(yú)有2條,據(jù)此可以估計(jì)改池塘里約有
 
條魚(yú).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的不等式x2≤2的解集為( 。
A、{x|x≤2}
B、{x|x≤
2
}
C、{x|x≤-
2
或x≥
2
}
D、{x|-
2
≤x≤
2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某程序框圖如圖所示,現(xiàn)輸入下列四個(gè)函數(shù):f(x)=
1
x
,f(x)=x2+x,f(x)=log3(x2+1),f(x)=2x-2-x,則輸出的函數(shù)是( 。
A、f(x)=
1
x
B、f(x)=x2+x
C、f(x)=log3(x2+1)
D、f(x)=2x-2-x

查看答案和解析>>

同步練習(xí)冊(cè)答案