【題目】如圖是函數(shù)yf(x)的導(dǎo)函數(shù)yf′(x)的圖象則下面判斷正確的是(   )

A. (2,1)f(x)是增函數(shù) B. (1,3)f(x)是減函數(shù)

C. 當(dāng)x2f(x)取極大值 D. 當(dāng)x4,f(x)取極大值

【答案】C

【解析】由條件知由于f′(x)≥0函數(shù)f(x)d單調(diào)遞增;f′(x)≤0單調(diào)f(x)單調(diào)遞減
觀察f′(x)的圖象可知,
當(dāng)x∈(-2,1)時,導(dǎo)函數(shù)的圖線負(fù)后正,故函數(shù)先遞減,后遞增,故A錯誤
當(dāng)x∈(1,3)時,導(dǎo)函數(shù)現(xiàn)正后負(fù),函數(shù)先增后減,故B錯誤
當(dāng)x∈(1,2)時函數(shù)遞增,x∈(2,3)函數(shù)單調(diào)減,故得到函數(shù)在2處是極大值;
同理,由函數(shù)的圖象可知函數(shù)在4處取得函數(shù)的極小值,故D錯誤
故答案選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一塊半徑為的正常數(shù))的半圓形空地,開發(fā)商計(jì)劃征地建一個矩形的游泳池和其附屬設(shè)施,附屬設(shè)施占地形狀是等腰,其中為圓心, 在圓的直徑上, 在半圓周上,如圖.

(1)設(shè),征地面積為,求的表達(dá)式,并寫出定義域;

(2)當(dāng)滿足取得最大值時,開發(fā)效果最佳,求出開發(fā)效果最佳的角的值,

求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是兩條不同的直線, , , 是三個不同的平面,給出下列四個命題:

①若 ,則 ②若, , ,則

③若, ,則 ④若 ,則

其中正確命題的序號是( ).

A. ①和② B. ②和③ C. ③和④ D. ①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心為,直線.

(1)求圓心的軌跡方程;

(2)若,求直線被圓所截得弦長的最大值;

(3)若直線是圓心下方的切線,當(dāng)上變化時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線過點(diǎn)(3,-2)且與橢圓4x2+9y2=36有相同的焦點(diǎn).

(I)求雙曲線的標(biāo)準(zhǔn)方程.

(II)若點(diǎn)M在雙曲線上, 是雙曲線的左、右焦點(diǎn),且|MF1|+|MF2|=試判斷的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12分,1小問7分,2小問5分

設(shè)函數(shù)

1處取得極值,確定的值,并求此時曲線在點(diǎn)處的切線方程;

2上為減函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018河南南陽市一中上學(xué)期第三次月考已知點(diǎn)為坐標(biāo)原點(diǎn), 是橢圓上的兩個動點(diǎn),滿足直線與直線關(guān)于直線對稱.

I)證明直線的斜率為定值,并求出這個定值;

II)求的面積最大時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時,.

(1)已畫出函數(shù)軸左側(cè)的圖像,如圖所示,請補(bǔ)出完整函數(shù)的圖像,并根據(jù)圖像寫出函數(shù)的增區(qū)間;

⑵寫出函數(shù)的解析式和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和是Sn,且Sn=1(n∈N),數(shù)列{bn}是公差d不等于0的等差數(shù)列,且滿足:b1=,b2,b5,ba14成等比數(shù)列.

(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;

(2)設(shè)cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案