已知平面直角坐標系中,角α的始邊與x正半軸重合,終邊與單位圓(圓心是原點,半徑為1的圓)交于點P.若角α在第
一象限,且數(shù)學公式.將角α終邊逆時針旋轉數(shù)學公式大小的角后與單位圓交于點Q,則點Q的坐標為


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
C
分析:利用三角函數(shù)的平方關系求出sinα=,cosα=,利用兩個角的和的正弦公式及余弦公式求出Q的坐標.
解答:因為角α在第一象限,且
所以sinα=,cosα=
所以sin=
=
所以點Q的坐標為
故選C.
點評:本題考查兩個角的和的正弦公式及余弦公式以及單位圓中的任意角的三角函數(shù)的定義,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知平面直角坐標系中三點坐標分別為A(3,0),B(0,4),C(cosθ,sinθ),θ∈R,則△ABC面積的最大值為(  )
A、
7
2
B、
9
2
C、
17
2
D、
21
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面直角坐標系中,點O為原點,A(-3,4),B(6,-2).C(4,6),D在AB上,且2AD=BD
(1)求
AB
的坐標及|
1
2
BC
|

(2)若
OE
=
OA
+
OB
,  
OF
=
OA
-
OB
,求
OE
OF
;
(3)求向量
DB
DC
夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面直角坐標系中,點O為原點,A(-2,-5),B(4,-13).
(1)求
AB
的坐標及|
AB
|

(2)若
OC
=
OA
+
OB
,
OD
=
OA
-
OB
,求
OC
OD
的坐標;
(3)求
OA
OB

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面直角坐標系中,A(cosx,sinx),B(1,1),
OA
+
OB
=
OC
,f(x)=|
OC
|2
(Ⅰ)求f(x)的最小正周期和對稱中心;
(Ⅱ)求f(x)在區(qū)間[0,2π]上的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面直角坐標系中,角α的始邊與x正半軸重合,終邊與單位圓(圓心是原點,半徑為1的圓)交于點P.若角α在第
一象限,且tanα=
4
3
.將角α終邊逆時針旋轉
π
3
大小的角后與單位圓交于點Q,則點Q的坐標為( 。

查看答案和解析>>

同步練習冊答案