【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,城市缺水問(wèn)題較為突出,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn) (噸),一位居民的月用水量不超過(guò) 的部分按平價(jià)收費(fèi),超出 的部分按議價(jià)收費(fèi),為了了解居民用水情況,通過(guò)抽祥,獲得了某年100位居民毎人的月均用水量(單位:噸),將數(shù)據(jù)按照 分成 組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中a的值;
(2)若該市有110萬(wàn)居民,估計(jì)全市居民中月均用水量不低于 噸的人數(shù),并說(shuō)明理由;
(3)若該市政府希望使80%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn) (噸),估計(jì)x的值(精確到0.01),并說(shuō)明理由.
【答案】
(1)解:由概率統(tǒng)計(jì)相關(guān)知識(shí),各組頻率之和的值為 , 頻率=(頻率/組距) 組距,
,解得a=0.4.
(2)解:由圖,不低于 噸的人數(shù)所占比例為 , 全市月圴用水量不低于3噸的人數(shù)為 (萬(wàn))
(3)解:由圖可知,月圴用水量小于 噸的居民人數(shù)所占比例為 .即73%的居民用水量小于 噸,同理,88%的居民用水量小于3噸,故 .
假設(shè)月圴用水量平均分布,則 (噸).
【解析】(1)由概率統(tǒng)計(jì)的相關(guān)知識(shí)各組的頻率和為1,列出方程求出a的值即可。(2)由圖計(jì)算出不低于3噸的頻率和頻率數(shù)即可。(3)結(jié)合圖表可計(jì)算出月均用水量小于2.5噸的頻率和月均用水量小于3噸的頻率,假設(shè)月均用水量的平均分布由此可求出x的值。
【考點(diǎn)精析】根據(jù)題目的已知條件,利用頻率分布直方圖的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校舉辦校園科技文化藝術(shù)節(jié),在同一時(shí)間安排《生活趣味數(shù)學(xué)》和《校園舞蹈賞析》兩場(chǎng)講座.已知A、B兩學(xué)習(xí)小組各有5位同學(xué),每位同學(xué)在兩場(chǎng)講座任意選聽一場(chǎng).若A組1人選聽《生活趣味數(shù)學(xué)》,其余4人選聽《校園舞蹈賞析》;B組2人選聽《生活趣味數(shù)學(xué)》,其余3人選聽《校園舞蹈賞析》.
(1)若從此10人中任意選出3人,求選出的3人中恰有2人選聽《校園舞蹈賞析》的概率;
(2)若從A、B兩組中各任選2人,設(shè)X為選出的4人中選聽《生活趣味數(shù)學(xué)》的人數(shù),求X的分布列和數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,底面ABCD為菱形,AA1⊥底面ABCD,E為B1D的中點(diǎn).
(Ⅰ)證明:平面ACE⊥平面ABCD;
(Ⅱ)若二面角D﹣AE﹣C為60°,AA1=AB=1,求三棱錐C﹣AED的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的多面體中, 菱形, 是矩形, ⊥平面 , , .
(Ⅰ)異面直線 與 所成的角余弦值;
(Ⅱ)求證平面 ⊥平面 ;
(Ⅲ)在線段 取一點(diǎn) ,當(dāng)二面角 的大小為60°時(shí),求 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(6﹣m)﹣f(m)﹣18+6m≥0,則實(shí)數(shù)m的取值范圍為( )
A.[﹣3,3]
B.[3,+∞)
C.[2,+∞)
D.(﹣∞,﹣2]∪[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某化工廠擬建一個(gè)下部為圓柱,上部為半球的容器(如圖圓柱高為 ,半徑為 ,不計(jì)厚度,單位:米),按計(jì)劃容積為 立方米,且 ,假設(shè)建造費(fèi)用僅與表面積有關(guān)(圓柱底部不計(jì) ),已知圓柱部分每平方米的費(fèi)用為2千元,半球部分每平方米的費(fèi)用為2千元,設(shè)該容器的建造費(fèi)用為y千元.
(1)求y關(guān)于r的函數(shù)關(guān)系,并求其定義域;
(2)求建造費(fèi)用最小時(shí)的 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 的圓心為 的圓心為N,一動(dòng)圓與圓M內(nèi)切,與圓N外切.
(1)求動(dòng)圓圓心P的軌方跡方程;
(2)設(shè)A,B分別為曲線P與x軸的左右兩個(gè)交點(diǎn),過(guò)點(diǎn) 的直線 與曲線P交于C,D兩點(diǎn),若 ,求直線 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題:
①若,則;
②已知,,且與的夾角為銳角,則實(shí)數(shù) 的取值范圍是;
③已知是平面上一定點(diǎn),是平面上不共線的三個(gè)點(diǎn),動(dòng)點(diǎn)滿足,,則的軌跡一定通過(guò)的重心;
④在中,,邊長(zhǎng)分別為,則只有一解;
⑤如果△ABC內(nèi)接于半徑為的圓,且
則△ABC的面積的最大值;
其中正確的序號(hào)為_______________________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)有是實(shí)數(shù)解時(shí),求實(shí)數(shù)的取值范圍;
(2)若,對(duì)一切恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com