【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,底面ABCD為菱形,AA1⊥底面ABCD,E為B1D的中點(diǎn).
(Ⅰ)證明:平面ACE⊥平面ABCD;
(Ⅱ)若二面角D﹣AE﹣C為60°,AA1=AB=1,求三棱錐C﹣AED的體積.
【答案】證明:(Ⅰ)連接BD,設(shè)AC與BD的交點(diǎn)為F,連接EF, 因?yàn)镋為B1D中點(diǎn),F(xiàn)為BD中點(diǎn),
所以EF∥BB1 ,
因?yàn)锽B1⊥平面ABCD,
所以EF⊥平面ABCD,
又因?yàn)镋F在平面ACE內(nèi),
所以平面ACE⊥平面ABCD.(6分)
解:(Ⅱ)由于四邊形ABCD是菱形,所以以F為坐標(biāo)原點(diǎn),
分別以FC,F(xiàn)D,F(xiàn)E為x,y,z軸,建立空間直角坐標(biāo)系,
設(shè)FA=a,F(xiàn)D=b,有a2+b2=1,
A(﹣a,0,0),C(a,0,0),D(0,b,0), ,
, ,
設(shè)平面ADE的法向量為 ,
平面ACE的法向量為 ,(8分)
由題意知 ,解得 .(10分)
所以菱形ABCD為正方形,
所以三棱錐C﹣ADE的體積 .(12分)
【解析】(Ⅰ)連接BD,設(shè)AC與BD的交點(diǎn)為F,連接EF,則EF∥BB1 , 從而EF⊥平面ABCD,由此能證明平面ACE⊥平面ABCD.(Ⅱ)以F為坐標(biāo)原點(diǎn),以FC,F(xiàn)D,F(xiàn)E為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出三棱錐C﹣ADE的體積.
【考點(diǎn)精析】利用平面與平面垂直的判定對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,已知S3=7,
且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng);
(2)令,n=1,2,…,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知隨機(jī)變量 的取值為不大于 的非負(fù)整數(shù)值,它的分布列為:
0 | 1 | 2 | n | ||
其中 ( )滿足: ,且 .
定義由 生成的函數(shù) ,令 .
(I)若由 生成的函數(shù) ,求 的值;
(II)求證:隨機(jī)變量 的數(shù)學(xué)期望 , 的方差 ;
( )
(Ⅲ)現(xiàn)投擲一枚骰子兩次,隨機(jī)變量 表示兩次擲出的點(diǎn)數(shù)之和,此時(shí)由 生成的函數(shù)記為 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某社區(qū)中學(xué)生的課外活動(dòng),對(duì)該社區(qū)的100名中學(xué)生進(jìn)行了調(diào)研,隨機(jī)抽取了若干名,年齡全部介于13與18之間,將年齡按如下方式分成五組:第一組;第二組;第五組.按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前三個(gè)組的頻率之比為,且第二組的頻數(shù)為4.
(1)試估計(jì)這100名中學(xué)生中年齡在內(nèi)的人數(shù);
(2)求調(diào)研中隨機(jī)抽取的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) 是兩個(gè)平面, 是兩條直線,有下列四個(gè)命題:
⑴如果 ,那么 .
⑵如果 ,那么 .
⑶如果 ,那么 .
其中正確命題的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ2(1+3sin2θ)=4,曲線C2: (θ為參數(shù)).
(Ⅰ)求曲線C1的直角坐標(biāo)方程和C2的普通方程;
(Ⅱ)極坐標(biāo)系中兩點(diǎn)A(ρ1 , θ0),B(ρ2 , θ0+ )都在曲線C1上,求 + 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家之一,城市缺水問題較為突出,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn) (噸),一位居民的月用水量不超過 的部分按平價(jià)收費(fèi),超出 的部分按議價(jià)收費(fèi),為了了解居民用水情況,通過抽祥,獲得了某年100位居民毎人的月均用水量(單位:噸),將數(shù)據(jù)按照 分成 組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中a的值;
(2)若該市有110萬居民,估計(jì)全市居民中月均用水量不低于 噸的人數(shù),并說明理由;
(3)若該市政府希望使80%的居民每月的用水量不超過標(biāo)準(zhǔn) (噸),估計(jì)x的值(精確到0.01),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某奶茶店對(duì)某時(shí)間段的奶茶銷售量及其價(jià)格進(jìn)行調(diào)查,統(tǒng)計(jì)出售價(jià)元和銷售量杯之間的一組數(shù)據(jù)如下表所示:
價(jià)格 | 5 | 5.5 | 6.5 | 7 |
銷售量 | 12 | 10 | 6 | 4 |
通過分析,發(fā)現(xiàn)銷售量對(duì)奶茶的價(jià)格具有線性相關(guān)關(guān)系.
(1)求銷售量對(duì)奶茶的價(jià)格的回歸直線方程;
(2)欲使銷售量為13杯,則價(jià)格應(yīng)定為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com