【題目】若圓()上僅有個(gè)點(diǎn)到直線的距離為,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
【答案】B
【解析】圓心到直線距離為 ,所以要有個(gè)點(diǎn)到直線的距離為,需 ,選B.
點(diǎn)睛:與圓有關(guān)的長(zhǎng)度或距離的最值問(wèn)題的解法.一般根據(jù)長(zhǎng)度或距離的幾何意義,利用圓的幾何性質(zhì)數(shù)形結(jié)合求解.
【題型】單選題
【結(jié)束】
15
【題目】設(shè)和為雙曲線的兩個(gè)焦點(diǎn),若, , 是正三角形的三個(gè)頂點(diǎn),則雙曲線的漸近線方程是( )
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,平面平面,側(cè)面是邊長(zhǎng)為的等邊三角形,底面是矩形,且,則該四棱錐外接球的表面積等于__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:三棱錐中,側(cè)面垂直底面, 是底面最長(zhǎng)的邊;圖1是三棱錐的三視圖,其中的側(cè)視圖和俯視圖均為直角三角形;圖2是用斜二測(cè)畫法畫出的三棱錐的直觀圖的一部分,其中點(diǎn)在平面內(nèi).
(Ⅰ)請(qǐng)?jiān)趫D2中將三棱錐的直觀圖補(bǔ)充完整,并指出三棱錐的哪些面是直角三角形;
(Ⅱ)設(shè)二面角的大小為,求的值;
(Ⅲ)求點(diǎn)到面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知與曲線相切的直線,與軸, 軸交于兩點(diǎn), 為原點(diǎn), , ,( ).
(1)求證:: 與相切的條件是: .
(2)求線段中點(diǎn)的軌跡方程;
(3)求三角形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直三棱柱中, , , 為棱的中點(diǎn).
(Ⅰ)探究直線與平面的位置關(guān)系,并說(shuō)明理由;
(Ⅱ)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系xoy中,其中A(0,0),B(2,0),C(1,1),D(0,1),圖中圓弧所在圓的圓心為點(diǎn)C,半徑為,且點(diǎn)P在圖中陰影部分(包括邊界)運(yùn)動(dòng).若,其中,則 的取值范圍是( )
A. [2,3+] B. [2,3+] C. [3-, 3+] D. [3-, 3+]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1-x)f′(x)的圖像如圖所示,則下列結(jié)論中一定成立的是( )
A. 函數(shù)f(x)有極大值f(2)和極小值f(1) B. 函數(shù)f(x)有極大值f(-2)和極小值f(1)
C. 函數(shù)f(x)有極大值f(2)和極小值f(-2) D. 函數(shù)f(x)有極大值f(-2)和極小值f(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線: 的焦點(diǎn)為,準(zhǔn)線為,三個(gè)點(diǎn), , 中恰有兩個(gè)點(diǎn)在上.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過(guò)的直線交于, 兩點(diǎn),點(diǎn)為上任意一點(diǎn),證明:直線, , 的斜率成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在原點(diǎn)的雙曲線 的右焦點(diǎn)為 ,右頂點(diǎn)為 ,( 為原點(diǎn))
(1)求雙曲線 的方程;
(2)若直線 : 與雙曲線恒有兩個(gè)不同的交點(diǎn) 和 ,且,求 的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com