【題目】在平面上給定相異兩點AB,設P點在同一平面上且滿足,當時,P點的軌跡是一個圓,這個軌跡最先由古希臘數(shù)學家阿波羅尼斯發(fā)現(xiàn),故我們稱這個圓為阿波羅尼斯圓,現(xiàn)有雙曲線,),A,B為雙曲線的左、右頂點,C,D為雙曲線的虛軸端點,動點P滿足,面積的最大值為面積的最小值為4,則雙曲線的離心率為______.

【答案】

【解析】

根據(jù)為雙曲線的左、右頂點可設,,,由兩點間距離公式并化簡可得動點的軌跡方程.為雙曲線的左、右頂點可知當位于圓的最高點時的面積最大,根據(jù)面積最大值求得.位于圓的最左端時的面積最小,結(jié)合最小面積可求得,即可求得雙曲線的離心率.

,,,

依題意,,

,

兩邊平方化簡得,則圓心為,半徑,

位于圓的最高點時的面積最大,最大面積為,

解得;

位于圓的最左端時的面積最小,最小面積為,

解得,

故雙曲線的離心率為.

故答案為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知某圓的極坐標方程為,

(1)圓的普通方程和參數(shù)方程;

(2)圓上所有點的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種,

方案一:每滿200元減50元;

方案二:每滿200元可抽獎一次.具體規(guī)則是依次從裝有3個紅球、l個白球的甲箱,裝有2個紅球、2個白球的乙箱,以及裝有1個紅球、3個白球的丙箱中各隨機摸出1個球,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)

紅球個數(shù)

3

2

1

0

實際付款

半價

7折

8折

原價

(1)若兩個顧客都選擇方案二,各抽獎一次,求至少一個人獲得半價優(yōu)惠的概率;

(2)若某顧客購物金額為320元,用所學概率知識比較哪一種方案更劃算?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

已知中心在坐標原點O的橢圓C經(jīng)過點A2,3),且點F2.0)為其右焦點.

)求橢圓C的方程;

)是否存在平行于OA的直線L,使得直線L與橢圓C有公共點,且直線OAL的距離等于4?若存在,求出直線L的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學習小組在研究性學習中,對晝夜溫差大小與綠豆種子一天內(nèi)出芽數(shù)之間的關(guān)系進行研究.該小組在4月份記錄了1日至6日每天晝夜最高、最低溫度(如圖1),以及浸泡的100顆綠豆種子當天內(nèi)的出芽數(shù)(如圖2).

根據(jù)上述數(shù)據(jù)作出散點圖,可知綠豆種子出芽數(shù) (顆)和溫差 ()具有線性相關(guān)關(guān)系.

(1)求綠豆種子出芽數(shù) (顆)關(guān)于溫差 ()的回歸方程;

(2)假如4月1日至7日的日溫差的平均值為11,估計4月7日浸泡的10000顆綠豆種子一天內(nèi)的出芽數(shù).

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=a-x2-2ax+lnx,aR

(1)當a=1時,求fx)在區(qū)間[1,e]上的最大值和最小值;

(2)求gx=fx+axx=1處的切線方程;

(3)若在區(qū)間(1,+∞)上,fx)<0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60/盒、65/盒、80/盒、90/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會得到支付款的80%

①當x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;

②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題表示雙曲線,命題表示橢圓

若命題為真命題,求實數(shù)的取值范圍.

判斷命題為真命題是命題為真命題的什么條件(請用簡要過程說明是充分不必要條件、必要不充分條件、充要條件 既不充分也不必要條件中的哪一個)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知aR,函數(shù)f(x)=(-x2ax)ex(xR).

(1)a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若函數(shù)f(x)(-1,1)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

同步練習冊答案