(本小題滿分12分)已知函數(shù)f(x)=x3-ax2-3x.
(1)若f(x)在x∈[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若x=3是f(x)的極值點(diǎn),求f(x)在x∈[1,a]上的最小值和最大值.
(1) a≤0(2) f(x)max=-6,f(x)min=-18.
解析試題分析:(1)對(duì)f(x)求導(dǎo),得f′(x)=3x2-2ax-3.………………1分
由f′(x)>0(x≥1),得a< (x-).………………2分
記t(x)= (x-),
當(dāng)x≥1時(shí),t(x)是增函數(shù),∴t(x)min= (1-1)=0.………………3分
∴a<0,又∵a=0時(shí)也符合題意,故a≤0.………………4分
(2)由題意,得f′(3)=0,即27-6a-3=0,∴a=4,………………6分
∴f(x)=x3-4x2-3x,f′(x)=3x2-8x-3.
令f′(x)=0,得x1=-,x2=3.………………8分
當(dāng)x變化時(shí),f′(x)、f(x)的變化情況如下表:x (-∞,-) - (-,3) 3 (3,+∞) f′(x) + 0 - 0 + f(x) ? 極大值 ? 極小值 ?
∴當(dāng)x∈(-∞,-]與[3,+∞)時(shí),f(x)是增函數(shù);當(dāng)x∈[-,3]時(shí),f(x)是減函數(shù).
于是,當(dāng)x∈[1,4]時(shí),有極小值f(3)=-18;………………10分
而f(1)=-6,f(4)=-12,
∴f(x)max=f(1)=-6,f(x)min=-18.………………12分
考點(diǎn):利用導(dǎo)數(shù)判定函數(shù)單調(diào)性,求函數(shù)的最值
點(diǎn)評(píng):解(1)過(guò)程中將不等式恒成立問(wèn)題轉(zhuǎn)化為求函數(shù)最值問(wèn)題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù).
(1)對(duì)于任意實(shí)數(shù),在恒成立(其中表示的導(dǎo)函數(shù)),求的最大值;
(2)若方程在上有且僅有一個(gè)實(shí)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(1)若,
①求的值;
②的最小值。
(參考數(shù)據(jù))
(2) 當(dāng)上是單調(diào)函數(shù),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)設(shè)為奇函數(shù),a為常數(shù)。
(1)求a的值;
(2)證明在區(qū)間上為增函數(shù);
(3)若對(duì)于區(qū)間上的每一個(gè)的值,不等式恒成立,求實(shí)數(shù)m 的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
(1)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;
(2)在(1)的條件下,求函數(shù)的圖像過(guò)點(diǎn)的切線方程;
(3)對(duì)一切的,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知函數(shù),
(I)求的單調(diào)區(qū)間;(II)求在區(qū)間上的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),曲線過(guò)點(diǎn),且在點(diǎn)處的切線斜率為2.
(Ⅰ)求的值;
(Ⅱ)求的極值點(diǎn);
(Ⅲ)對(duì)定義域內(nèi)任意一個(gè),不等式是否恒成立,若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)求函數(shù)f(x)的極值;
(2)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍;
(3)求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知函數(shù).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),討論的單調(diào)性.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com