A. | $\frac{x^2}{16}-\frac{y^2}{4}=1$ | B. | $\frac{x^2}{8}-\frac{y^2}{4}=1$ | C. | $\frac{x^2}{4}-{y^2}=1$ | D. | $\frac{x^2}{2}-{y^2}=1$ |
分析 由已知方程即可得出雙曲線的左頂點(diǎn)、一條漸近線方程與拋物線的焦點(diǎn)、準(zhǔn)線的方程,再根據(jù)數(shù)量關(guān)系即可列出方程,解出即可.
解答 解:∵雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左頂點(diǎn)(-a,0)與拋物線y2=2px(p>0)的焦點(diǎn)F($\frac{P}{2}$,0)的距離為4,∴$\frac{P}{2}$+a=4;
又雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點(diǎn)坐標(biāo)為(-2,-1),∴漸近線的方程應(yīng)是y=$\frac{a}$x,而拋物線的準(zhǔn)線方程為x=-$\frac{p}{2}$,因此-1=$\frac{a}$×(-2),-2=-$\frac{p}{2}$,
聯(lián)立得$\left\{\begin{array}{l}{\frac{p}{2}+a=4}\\{a=2b}\\{p=4}\end{array}\right.$,解得a=2,b=1,p=4.
故雙曲線的標(biāo)準(zhǔn)方程為:$\frac{x^2}{4}-{y^2}=1$.
故選:C.
點(diǎn)評(píng) 本題考查拋物線以及雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,熟練掌握?qǐng)A錐曲線的圖象與性質(zhì)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12 | B. | $\sqrt{74}$ | C. | $\sqrt{80}$ | D. | $3\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{12}$<x<$\frac{1}{5}$ | B. | $\frac{1}{6}$<x<$\frac{1}{5}$ | C. | $\frac{1}{12}$<x<$\frac{2}{3}$ | D. | $\frac{1}{6}$<x<$\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com