17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)是F1(-2,0),離心率e=$\frac{\sqrt{6}}{3}$,
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)如果直線l過(guò)橢圓的右焦點(diǎn),且在y軸的截距是2,求直線l的方程.
(3)求以橢圓左焦點(diǎn)為圓心,與直線l相切的圓的方程.

分析 (1)由c=2,$e=\frac{\sqrt{6}}{3}$=$\frac{c}{a}$,b2=a2-c2,解出即可得出.
(2)橢圓的右焦點(diǎn)(2,0),且在y軸的截距是2,可得直線l的方程為:$\frac{x}{2}+\frac{y}{2}$=1.
(3)左焦點(diǎn)是F1(-2,0),到直線l的距離r=$\sqrt{2}$.即可得出圓的方程.

解答 解:(1)由c=2,$e=\frac{\sqrt{6}}{3}$=$\frac{c}{a}$,b2=a2-c2
解得c=2,a2=6,b2=2.
∴橢圓C的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}$=1.
(2)橢圓的右焦點(diǎn)(2,0),且在y軸的截距是2,
則直線l的方程為:$\frac{x}{2}+\frac{y}{2}$=1,化為x+y-2=0.
(3)左焦點(diǎn)是F1(-2,0),到直線l的距離r=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$.
∴要求的圓的方程為:(x+2)2+y2=2.

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線的截距式、點(diǎn)到直線的距離公式、直線與圓相切的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知向量$\overrightarrow a=(0,1,-1),\overrightarrow b=(1,0,2)$,若向量$k\overrightarrow a+\overrightarrow b$與向量$\overrightarrow a-\overrightarrow b$互相垂直,則k的值是( 。
A.$\frac{3}{2}$B.2C.$\frac{7}{4}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={x|1≤x≤4,x∈N},B={y|y=x2,x∈A},則A∩B=( 。
A.{1,4}B.{2,3}C.{9,16}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)α為銳角,若$sin({α+\frac{π}{6}})=\frac{3}{5}$,則$cos({2α+\frac{π}{12}})$的值為$\frac{31}{50}\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知直線a,b,平面α,則以下三個(gè)命題:
①若a∥b,b?α,則a∥α;
②若a∥b,b∥α,則a∥α;
③a∥α,b∥α,則a∥b;
其中真命題的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,D、E分別為AB、BC的中點(diǎn),且$\overrightarrow{AB}•\overrightarrow{CD}$=$\overrightarrow{BC}•\overrightarrow{AE}$,外接圓的半徑為1.
(1)求證:0<B≤$\frac{π}{3}$;
(2)求a2+c2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.以下數(shù)表的構(gòu)造思路源于我國(guó)南宋數(shù)學(xué)家楊輝所著的《詳解九章算術(shù)》一書中的“楊輝三角性”.

該表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個(gè)數(shù),則這個(gè)數(shù)為( 。
A.2017×22015B.2017×22014C.2016×22015D.2016×22014

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.過(guò)橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的焦點(diǎn)F作直線l交橢圓C于P,Q兩點(diǎn).若|FP|=p,|FQ|=q,則$\frac{1}{p}$+$\frac{1}{q}$=( 。
A.3B.$\frac{3}{2}$C.$\frac{4}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.判斷滿足下列條件的三角形形狀.
(1)acosA=bcosB;
(2)cos(2B+C)+2sinAsinB=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案