3.已知全集U=R,M=$\{x|y=\sqrt{x-2}\}$,N={x|x<1或x>3}.求:
(1)集合M∪N;
(2)M∩(∁UN).

分析 求出集合M,(1)求出M、N的并集即可;(2)求出N的補(bǔ)集,從而求出其和M的交集即可.

解答 解:M=$\{x|y=\sqrt{x-2}\}$={x|x≥2},N={x|x<1或x>3},
(1)M∪N={x|x<1或x≥2},
(2)∵∁UN={x|1≤x≤3},
∴M∩(∁UN)={x|2≤x≤3}.

點(diǎn)評 本題考查了集合的交、并、補(bǔ)集的運(yùn)算,考查二次根式的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)$y=2sin({\frac{π}{3}-x})cos({\frac{π}{6}+x})$(x∈R)的最小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知定義在R上的函數(shù)f(x)滿足$f(x)=\left\{\begin{array}{l}cosx\;,\;\;sinx≤cosx\\ sinx\;,\;\;sinx>cosx\end{array}\right.$,給出以下結(jié)論:
①f(x)是周期函數(shù);
②f(x)的最小值為-1;
③當(dāng)且僅當(dāng)x=2kπ,k∈Z時,f(x)取得最小值;
④當(dāng)且僅當(dāng)$2kπ-\frac{π}{2}<x<({2k+1})π$,k∈Z時,f(x)>0;
⑤f(x)的圖象上相鄰兩個最低點(diǎn)的距離是2π,
其中正確的結(jié)論序號是①④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ax2+bx+c(a≠0)(a、b、c為常數(shù)),滿足f(0)=1,f(1)=6,對于一切x∈R恒有f(-2+x)=f(-2-x)成立.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[a-1,2a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)、g(x)分別由如表給出,則f[g(1)]=( 。
x1234
f(x)2341
x1234
g(x)4321
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在映射f:A→B中,A=B={(x,y)|x,y∈R},且f:(x,y)→(x-y,x+y),則B中元素(-1,2)在f作用下的原像是( 。
A.$({\frac{1}{2},\frac{3}{2}})$B.(-3,1)C.(-1,2)D.$({\frac{3}{2},\frac{1}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)$f(x)={log_{\frac{1}{2}}}({{x^2}-2x+1})$的單調(diào)遞增區(qū)間是(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在正項(xiàng)數(shù)列{an}中,an+12=anan+2(?n∈N*),已知a1=$\frac{1}{4}$,a8=8a5
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=log2an,數(shù)列{bn}的前n項(xiàng)和為Sn,求數(shù)列{$\frac{{S}_{n}+\frac{5n}{2}+8}{n}$}的最小項(xiàng)及其值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在平面直角坐標(biāo)系xOy中,設(shè)A,B,C是圓x2+y2=1上相異三點(diǎn),若存在正實(shí)數(shù)λ,? 使得 $\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,則λ2+(?-3)2的取值范圍是( 。
A.[0,+∞)B.(2,+∞)C.(2,8)D.(8,+∞)

查看答案和解析>>

同步練習(xí)冊答案