將邊長為1的正方形ABCD沿對角線AC折起,使平面ACD⊥平面ABC,則折起后B,D兩點(diǎn)的距離為________;直線BD和平面ABC所成角的大小是________.

1    45°
分析:邊長為1的正方形ABCD沿對角線AC折起,使平面ACD⊥平面ABC,抓住折疊前后不變的量解決問題,正方形的邊長不變,∠ABC=∠ADC=90°,從而想到取AC的中點(diǎn),再利用面面垂直的性質(zhì)定理,可證DE⊥平面ABC,可解B,D兩點(diǎn)的距離和直線BD和平面ABC所成角.
解答:解:取AC邊上的中點(diǎn)E,連接DE,BE
則DE⊥AC,
∵平面ACD⊥平面ABC,
平面ACD∩平面ABC=AC,
∴DE⊥平面ABC,又BE?平面ABC
∴DE⊥BE,而DE=BE=
∴BD=DE=1;
且直線BD和平面ABC所成角為∠DBE=45°.
故答案為1;45°.
點(diǎn)評:考查直線和平面所成的角,及空間中兩點(diǎn)間的距離,求直線和平面所成的角關(guān)鍵是找到斜線在平面內(nèi)的射影,把空間角轉(zhuǎn)化為平面角求解,屬基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為1的正方形ABCD沿對角線BD折起,使得點(diǎn)A到點(diǎn)A′的位置,且A′C=1,則折起后二面角A′-DC-B的大。ā 。
A、arctan
2
2
B、
π
4
C、arctan
2
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)將邊長為1的正方形ABCD沿對角線BD折成直二面角,若點(diǎn)P滿足
BP
=
1
2
BA
-
1
2
BC
+
BD
,則|
BP
|2的值為( 。
A、
3
2
B、2
C、
10-
2
4
D、
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為1的正方形ABCD沿對角線AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱錐D-ABC中,給出下列三個命題:
①面DBC是等邊三角形;  ②AC⊥BD;  ③三棱錐D-ABC的體積是
2
6

其中正確命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為1的正方形ABCD沿對角線BD折起成直二面角A-BD-C,則在這個直二面角A-BD-C中點(diǎn)A到直線BC的距離是
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為1的正方形ABCD沿對角線AC對折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為
2
π
3
2
π
3

查看答案和解析>>

同步練習(xí)冊答案