17.函數(shù)y=2sin2(x+$\frac{3π}{2}$)-1是( 。
A.最小正周期為π的偶函數(shù)B.最小正周期為π的奇函數(shù)
C.最小正周期為$\frac{π}{2}$的偶函數(shù)D.最小正周期為$\frac{π}{2}$的奇函數(shù)

分析 將函數(shù)y化簡(jiǎn),根據(jù)三角函數(shù)的性質(zhì)可得答案.

解答 解:函數(shù)y=2sin2(x+$\frac{3π}{2}$)-1,
化簡(jiǎn)可得y=-cos(2x+3π)=cos2x.
∴函數(shù)y是最小正周期T=$\frac{2π}{2}$=π的偶函數(shù).
故選A.

點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡(jiǎn)能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.學(xué)校從參加高三年級(jí)期中考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計(jì)了他們的數(shù)學(xué)成績(jī)(成績(jī)均為整數(shù)且滿分為100分),得到如下數(shù)學(xué)成績(jī)的頻率分布表:
分組頻數(shù)頻率
[40,50)2
[50,60)3
[60,70)0.28
[70,80)15
[80,90)12
[90,100]4
(Ⅰ)請(qǐng)?jiān)诖痤}卡上完成頻率分布表和作出頻率分布直方圖;
(Ⅱ)用樣本估計(jì)總體,若高三年級(jí)共有2000人,估計(jì)成績(jī)不及格(60分以下)的人數(shù);
(Ⅲ)為了幫助成績(jī)差的學(xué)生提高數(shù)學(xué)成績(jī),現(xiàn)從成績(jī)[90,100]的學(xué)生中選兩位同學(xué),共同幫助成績(jī)?cè)赱40,50)中的某一位同學(xué),即成立幫扶學(xué)習(xí)小組,樣本中已知甲同學(xué)的成績(jī)?yōu)?2分,乙同學(xué)的成績(jī)?yōu)?5分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.?dāng)?shù)列{an}對(duì)于確定的正整數(shù)m,若存在正整數(shù)n使得am+n=am+an成立,則稱數(shù)列{an}為“m階可分拆數(shù)列”.
(1)設(shè){an}是首項(xiàng)為2,公差為2的等差數(shù)列,證明{an}為“3階可分拆數(shù)列”;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為${S_n}={2^n}-a$(a>0),若數(shù)列{an}為“1階可分拆數(shù)列”,求實(shí)數(shù)a的值;
(3)設(shè)${a_n}={2^n}+{n^2}+12$,試探求是否存在m使得若數(shù)列{an}為“m階可分拆數(shù)列”.若存在,請(qǐng)求出所有m,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)i為虛數(shù)單位,若$z=\frac{a-i}{1+i}(a∈{R})$是純虛數(shù),則a的值是( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.甲,乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,其質(zhì)量按測(cè)試指標(biāo)劃分:指標(biāo)大于或等于95為正品,小于95為次品,現(xiàn)隨機(jī)抽取這兩臺(tái)車床生產(chǎn)的零件各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:
測(cè)試指標(biāo)[85,90)[90,95)[95,100)[100,105)[105,110)
機(jī)床甲81240328
機(jī)床乙71840296
(1)試分別估計(jì)甲機(jī)床、乙機(jī)床生產(chǎn)的零件為正品的概率;
(2)甲機(jī)床生產(chǎn)一件零件,若是正品可盈利160元,次品則虧損20元;乙機(jī)床生產(chǎn)一件零件,若是正品可盈利200元,次品則虧損40元,在(1)的前提下,現(xiàn)需生產(chǎn)這種零件2件,以獲得利潤的期望值為決策依據(jù),應(yīng)該如何安排生產(chǎn)最佳?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若向量$\overrightarrow{m}$=(2,1),$\overrightarrow{n}$=(-3,2λ),且(2$\overrightarrow{m}$-$\overrightarrow{n}$)∥($\overrightarrow{m}$+3$\overrightarrow{n}$),則實(shí)數(shù)λ=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=|2x-1|+3x-4,記不等式f(x)<-3的解集為M.
(Ⅰ)求M;
(Ⅱ)當(dāng)x∈M時(shí),證明:x[f(x)]2-x2|f(x)|<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{3}$,聯(lián)接橢圓四個(gè)頂點(diǎn)的四邊形面積為2$\sqrt{6}$.
(1)求橢圓C的方程;
(2)A、B是橢圓的左右頂點(diǎn),P(xP,yP)是橢圓上任意一點(diǎn),橢圓在P點(diǎn)處的切線與過A、B且與x軸垂直的直線分別交于C、D兩點(diǎn),直線AD、BC交于Q(xQ,yQ),是否存在實(shí)數(shù)λ,使xP=λxQ恒成立,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.點(diǎn)A,B,C,D在同一個(gè)球的球面上,AB=BC=$\sqrt{6}$,∠ABC=90°,若四面體ABCD體積的最大值為3,則這個(gè)球的表面積為( 。
A.B.C.D.16π

查看答案和解析>>

同步練習(xí)冊(cè)答案