定義域?yàn)镽的函數(shù)f(x),其對(duì)稱軸為x=2,且其導(dǎo)函數(shù)f′(x)滿足(x-2)f′(x)>0,則當(dāng)2<a<4時(shí),有(  )
A、f(2a)<f(2)<f(log2a)
B、f(2)<f(2a)<f(log2a)
C、f(2)<f(log2a)<f(2a
D、f(log2a)<f(2a)<f(2)
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:先利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,得到當(dāng)x=2時(shí)f(x)有最小值,再利用單調(diào)性判斷出f(log2a)<f(log2a)<f(2a),問(wèn)題得以解決.
解答: 解:∵(x-2)f′(x)>0
∴當(dāng) x>2時(shí),f′(x)>0,f(x)在(2,+∞)上遞增
當(dāng)x<2時(shí),f′(x)<0,f(x)在(-∞,2)上遞減,
當(dāng)x=2時(shí)f(x)有最小值,
∵2<a<4,
∴l(xiāng)og2a<4<2a
∴f(2)<f(log2a)<f(2a),
故選:C.
點(diǎn)評(píng):本題主要考查了函數(shù)的單調(diào)性和最值與導(dǎo)數(shù)的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題錯(cuò)誤的是(  )
A、命題“若m>0,則方程x2+x-m=0有實(shí)數(shù)根”的逆否命題為:“若方程x2+x-m=0無(wú)實(shí)數(shù)根,則m≤0”
B、“x=1”是“x2-3x+2=0”的充分不必要條件
C、對(duì)于命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R均有x2+x+1≥0
D、若p∧q為假命題,則p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1
2
(ax+a-x)和g(x)=
1
2
(ax-a-x)的奇偶性為(  )
A、都是偶函數(shù)
B、都是奇函數(shù)
C、f(x)是奇函數(shù),g(x)是偶函數(shù)
D、f(x)是偶函數(shù),g(x)是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,與函數(shù)f(x)=lnx有相同定義域的是(  )
A、f(x)=ex
B、f(x)=
1
x
C、f(x)=|x|
D、f(x)=
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果函數(shù)y=f(x-2)是偶函數(shù),那么函數(shù)y=f(
1
2
x)的圖象的一條對(duì)稱軸是直線( 。
A、x=-4
B、x=-2
C、x=
1
4
D、x=
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某人睡午覺醒來(lái),發(fā)現(xiàn)表停了,他打開收音機(jī)想聽電臺(tái)整點(diǎn)報(bào)時(shí),則他等待的時(shí)間不多于5分鐘的概率是( 。
A、
1
6
B、
1
12
C、
1
60
D、
1
72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2x+x3-2的零點(diǎn)所在區(qū)間是(  )
A、(-2,-1)
B、(-1,0)
C、(0,1)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱錐的高為3,側(cè)棱長(zhǎng)均相等且為2
3
,底面是等邊三角形,則這個(gè)三棱錐的體積為( 。
A、
27
4
B、
9
4
C、
27
3
4
D、
9
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是函數(shù)y=Asin(ωx+φ)+k(A>0,ω>0,|φ|<
π
2
)的一段圖象.求此函數(shù)解析式,指出對(duì)稱軸和對(duì)稱中心.

查看答案和解析>>

同步練習(xí)冊(cè)答案