18.${(\sqrt{2x}+\frac{1}{x^2})^n}$展開式中只有第六項二項式系數(shù)最大,則展開式中的常數(shù)項是720.

分析 由條件利用二項式系數(shù)的性質(zhì)求得n=10,再利用二項式展開式的通項公式,求得展開式中的常數(shù)項.

解答 解:由題意可得${C}_{n}^{5}$最大,故n=10,故${(\sqrt{2x}+\frac{1}{x^2})^n}$=${(\sqrt{2x}+\frac{1}{{x}^{2}})}^{10}$,
它的展開式的通項公式為Tr+1=${C}_{10}^{r}$•${(\sqrt{2})}^{10-r}$•${x}^{\frac{10-5r}{2}}$,
令$\frac{10-5r}{2}$=0,求得r=2,故展開式中的常數(shù)項是${C}_{10}^{2}$•${(\sqrt{2})}^{8}$=720,
故答案為:720.

點評 本題主要考查二項式定理的應(yīng)用,二項式系數(shù)的性質(zhì),二項式展開式的通項公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知命題p:?x0∈R,x0-2>0,命題q:?x∈R,2x>x2,則下列命題中為真命題的是( 。
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AD∥BC,側(cè)棱PA⊥底面ABCD,且PA=AB=BC=2,AD=1.
(Ⅰ)試作出平面PAB與平面PCD的交線EP(不需要說明畫法和理由);
(Ⅱ)求證:直線EP⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={x|x2-2x≤0},B={y|y=x2-2x},則A∩B=( 。
A.[-1,2]B.[0,2]C.[-1,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=$\frac{1}{2}$sin2x+$\frac{1}{2}$tan$\frac{π}{3}$cos2x的最小正周期為( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,BC=$\sqrt{3}$,∠A=60°,則△ABC周長的最大值$3\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若△ABC的三條邊a、b、c滿足(a+b):(b+c):(c+a)=7:9:10,則△ABC(  )
A.一定是銳角三角形
B.一定是直角三角形
C.一定是鈍角三角形
D.可能是銳角三角形也可能是鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,∠A為鈍角,且sinA=$\frac{4}{5}$,c=5,b=4,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知$\overrightarrow{i}$、$\overrightarrow{j}$均為單位向量,且互相垂直,若向量$\overrightarrow{a}$=3$\overrightarrow{i}$+2$\overrightarrow{j}$,$\overrightarrow$=-$\overrightarrow{j}$,求向量2$\overrightarrow$-$\overrightarrow{a}$的模.

查看答案和解析>>

同步練習(xí)冊答案