分析 由正弦定理可得:$\frac{sinB}$=$\frac{c}{sinC}$=$\frac{a}{sinA}$=$\frac{\sqrt{3}}{sin6{0}^{°}}$=2,因此△ABC周長(zhǎng)=a+b+c=$\sqrt{3}$+2sinB+2sinC,=2sinB+2sin(120°-B)+$\sqrt{3}$,利用和差公式展開(kāi)化簡(jiǎn)整理,再利用三角函數(shù)的單調(diào)性即可得出.
解答 解:在△ABC中,由正弦定理可得:$\frac{sinB}$=$\frac{c}{sinC}$=$\frac{a}{sinA}$=$\frac{\sqrt{3}}{sin6{0}^{°}}$=2,
∴b=2sinB,c=2sinC,
∴△ABC周長(zhǎng)=a+b+c=$\sqrt{3}$+2sinB+2sinC,
=2sinB+2sin(120°-B)+$\sqrt{3}$
=2sinB+2$(\frac{\sqrt{3}}{2}cosB+\frac{1}{2}sinB)$+$\sqrt{3}$
=3sinB+$\sqrt{3}$cosB+$\sqrt{3}$
=2$\sqrt{3}$$(\frac{\sqrt{3}}{2}sinB+\frac{1}{2}cosB)$+$\sqrt{3}$
=2$\sqrt{3}$sin(B+30°)+$\sqrt{3}$,
∵0°<B<120°,
∴B+30°∈(30°,150°),
∴sin(B+30°)∈$(\frac{1}{2},1]$.
∴△ABC周長(zhǎng)≤3$\sqrt{3}$.
故答案為:3$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了正弦定理、和差公式、三角函數(shù)求值,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,0] | B. | (-∞,$\frac{1}{2}$] | C. | (-∞,1] | D. | (-∞,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 7 | C. | 11 | D. | 13 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com