【題目】重慶市第八中學(xué)校為了解學(xué)生喜愛(ài)運(yùn)動(dòng)是否與性別有關(guān),從全校學(xué)生中隨機(jī)抽取50名學(xué)生進(jìn)行問(wèn)卷調(diào)查,得到如圖所示的列聯(lián)表.
喜愛(ài)運(yùn)動(dòng) | 不喜愛(ài)運(yùn)動(dòng) | 合計(jì) | |
男生 | 22 | 8 | 30 |
女生 | 8 | 12 | 20 |
合計(jì) | 30 | 20 | 50 |
附:,
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)能否有97.5%以上的把握認(rèn)為“喜愛(ài)運(yùn)動(dòng)”與“性別”有關(guān);
(2)用分層抽樣的方法從被調(diào)查的20名女生中抽取5名進(jìn)行問(wèn)卷調(diào)查,求抽取喜愛(ài)運(yùn)動(dòng)的女生、不喜愛(ài)運(yùn)動(dòng)的女生各有多少的人;
(3)在(2)抽取的女生中,隨機(jī)選出2人進(jìn)行座談,求至少有1名是喜愛(ài)運(yùn)動(dòng)的女生的概率.
【答案】(1)有97.5%以上的把握認(rèn)為“喜愛(ài)運(yùn)動(dòng)”與“性別”有關(guān);(2)2,3;(3).
【解析】
(1)計(jì)算的值即可判斷;
(2)由分層抽樣的性質(zhì)求解即可;
(3)設(shè)至少有1名是喜愛(ài)運(yùn)動(dòng)的女生為事件,算出事件的對(duì)立事件的概率,即可得出事件的概率.
(1),
故有97.5%以上的把握認(rèn)為“喜愛(ài)運(yùn)動(dòng)”與“性別”有關(guān).
(2)由已知得,喜愛(ài)運(yùn)動(dòng)的女生占比為,由分層抽樣方法,應(yīng)抽取2人.
同理知,不喜愛(ài)運(yùn)動(dòng)的女生有3人.
(3)設(shè)至少有1名是喜愛(ài)運(yùn)動(dòng)的女生為事件
則:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)和是雙曲線上的兩點(diǎn),線段的中點(diǎn)為,直線不經(jīng)過(guò)坐標(biāo)原點(diǎn).
(1)若直線和直線的斜率都存在且分別為和,求證:;
(2)若雙曲線的焦點(diǎn)分別為、,點(diǎn)的坐標(biāo)為,直線的斜率為,求由四點(diǎn)、、、所圍成四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè)同學(xué)家開(kāi)了一個(gè)奶茶店,他為了研究氣溫對(duì)熱奶茶銷(xiāo)售杯數(shù)的影響,從一季度中隨機(jī)選取5天,統(tǒng)計(jì)出氣溫與熱奶茶銷(xiāo)售杯數(shù),如表:
氣溫(oC) | 0 | 4 | 12 | 19 | 27 |
熱奶茶銷(xiāo)售杯數(shù) | 150 | 132 | 130 | 104 | 94 |
(Ⅰ)求熱奶茶銷(xiāo)售杯數(shù)關(guān)于氣溫的線性回歸方程(精確到0.1),若某天的氣溫為15oC,預(yù)測(cè)這天熱奶茶的銷(xiāo)售杯數(shù);
(Ⅱ)從表中的5天中任取一天,若已知所選取該天的熱奶茶銷(xiāo)售杯數(shù)大于120,求所選取該天熱奶茶銷(xiāo)售杯數(shù)大于130的概率.
參考數(shù)據(jù):,.參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面四邊形ABCD中,E、F是AD、BD中點(diǎn),AB=AD=CD=2, BD=2 ,∠BDC=90°,將△ABD沿對(duì)角線BD折起至△,使平面⊥平面BCD,則四面體中,下列結(jié)論不正確是 ( )
A. EF∥平面
B. 異面直線CD與所成的角為90°
C. 異面直線EF與所成的角為60°
D. 直線與平面BCD所成的角為30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰梯形中,,,現(xiàn)以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.
(1)證明:平面平面;
(2)若為棱上一點(diǎn),且平面分三棱錐所得的上下兩部分的體積比為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),點(diǎn)為曲線上的動(dòng)點(diǎn),過(guò)作軸的垂線,垂足為,滿足。
(1)求曲線的方程;
(2)直線與曲線交于兩不同點(diǎn),( 非原點(diǎn)),過(guò),兩點(diǎn)分別作曲線的切線,兩切線的交點(diǎn)為。設(shè)線段的中點(diǎn)為,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某手機(jī)專(zhuān)賣(mài)店對(duì)某市市民進(jìn)行手機(jī)認(rèn)可度的調(diào)查,在已購(gòu)買(mǎi)手機(jī)的1000名市民中,隨機(jī)抽取100名,按年齡(單位:歲)進(jìn)行統(tǒng)計(jì)的頻數(shù)分布表和頻率分布直方圖如下:
分組(歲) | 頻數(shù) |
5 | |
35 | |
10 | |
合計(jì) | 100 |
(1)求頻數(shù)分布表中,的值,并補(bǔ)全頻率分布直方圖;
(2)在抽取的這100名市民中,從年齡在、內(nèi)的市民中用分層樣的方法抽取5人參加手機(jī)宣傳活動(dòng),現(xiàn)從這5人中隨機(jī)選取2人各贈(zèng)送一部手機(jī),求這2人中恰有1人的年齡在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:
①如果平面外一條直線與平面內(nèi)一條直線平行,那么;
②過(guò)空間一定點(diǎn)有且只有一條直線與已知平面垂直;
③如果一條直線垂直于一個(gè)平面內(nèi)的無(wú)數(shù)條直線,那么這條直線與這個(gè)平面垂直;
④若兩個(gè)相交平面都垂直于第三個(gè)平面,則這兩個(gè)平面的交線垂直于第三個(gè)平面.
其中真命題的序號(hào)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com