【題目】

已知是遞增數(shù)列,其前項和為,且,

)求數(shù)列的通項;

)是否存在使得成立?若存在,寫出一組符合條件的的值;若不存在,請說明理由;

)設,若對于任意的,不等式

恒成立,求正整數(shù)的最大值.

【答案】12)不存在(38

【解析】

,得,解得,或

由于,所以

因為,所以.

,

整理,得,即

因為是遞增數(shù)列,且,故,因此

則數(shù)列是以2為首項,為公差的等差數(shù)列.

所以.………………………………………………5

)滿足條件的正整數(shù)不存在,證明如下:

假設存在,使得

整理,得,

顯然,左邊為整數(shù),所以式不成立.

故滿足條件的正整數(shù)不存在. ……………………8

,

不等式可轉化為

.

所以,即當增大時,也增大.

要使不等式對于任意的恒成立,只需即可.

因為,所以.

.

所以,正整數(shù)的最大值為8 ………………………………………14

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若,求函數(shù)的零點;

(2)若恒成立,求的取值范圍;

(3)設函數(shù),解不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某書店剛剛上市了《中國古代數(shù)學史》,銷售前該書店擬定了5種單價進行試銷,每種單價(元)試銷l天,得到如表單價(元)與銷量(冊)數(shù)據(jù):

單價(元)

18

19

20

21

22

銷量(冊)

61

56

50

48

45

(l)根據(jù)表中數(shù)據(jù),請建立關于的回歸直線方程:

(2)預計今后的銷售中,銷量(冊)與單價(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價應定為多少元?

附:,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修44:坐標系與參數(shù)方程]

在直角坐標系中中,曲線的參數(shù)方程為為參數(shù),). 以坐標原點為極點,軸正半軸為極軸建立極坐標系,已知直線的極坐標方程為.

(Ⅰ)求曲線C的普通方程和直線的直角坐標方程;

(Ⅱ)設是曲線上的一個動點,當時,求點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義域為的奇函數(shù).

(1)求實數(shù)的值并判斷函數(shù)的單調性;

(2)當時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列{an}前n項和為Sn , a1=a2=2,且滿足Sn+Sn+1+Sn+2=3n2+6n+5,則S47等于

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學家劉徽在《九章算術注》中提出割圓術:“割之彌細,所失彌少,割之割,以至于不可割,則與圓合體,而無所失矣”,即通過圓內接正多邊形細割圓,并使正多邊形的面積無限接近圓的面積,進而來求得較為精確的圓周率.如果用圓的內接正邊形逼近圓,算得圓周率的近似值記為,那么用圓的內接正邊形逼近圓,算得圓周率的近似值加可表示成( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】O為坐標原點,直線l與圓x2+y2=2相切.
(1)若直線l分別與x、y軸正半軸交于A、B兩點,求△AOB面積的最小值及面積取得最小值時的直線l的方程.
(2)設直線l交橢圓 =1于P、Q兩點,M為PQ的中點,求|OM|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面,,,,點Q在棱AB上.

(1)證明:平面.

(2)若三棱錐的體積為,求點B到平面PDQ的距離.

查看答案和解析>>

同步練習冊答案