【題目】已知函數(shù)是定義域為的奇函數(shù).
(1)求實數(shù)的值并判斷函數(shù)的單調(diào)性;
(2)當時,不等式恒成立,求實數(shù)的取值范圍.
【答案】(1)見解析(2).
【解析】分析:(1)由奇函數(shù)可得,解得,經(jīng)檢驗,當時,函數(shù)為奇函數(shù);設且,利用指數(shù)函數(shù)的性質(zhì)可證明,從而可得結果;(2)結合函數(shù)的單調(diào)性與奇偶性可得,當時,不等式恒成立,等價于對恒成立,換元后,利用二次函數(shù)的性質(zhì)列不等式組求解即可.
詳解:(1)解法一:∵函數(shù)是定義域為的奇函數(shù),
∴,解得.
經(jīng)檢驗,當時,函數(shù)為奇函數(shù),即所求實數(shù)的值為.
∵ ,
在上恒成立,所以是上的減函數(shù).
解法二:∵函數(shù)是定義域為的奇函數(shù),
∴,解得.
經(jīng)檢驗,當時,函數(shù)為奇函數(shù),即所求實數(shù)的值為.
設且,
則
,
∵,∴,,
∴,即,
所以是上的減函數(shù).
(2)由,可得.
∵是上的奇函數(shù),∴,
又是上的減函數(shù),
所以對恒成立,
令,∵,∴,
∴對恒成立,
令,,
∴,解得,
所以實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形, , , 垂直于底面, , , 分別為, 的中點.
(Ⅰ)求證: ;
(Ⅱ)求四棱錐的體積和截面的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在中,,,,分別是,,中點,,.現(xiàn)將沿折起,如圖2所示,使二面角為,是的中點.
(1)求證:面面;
(2)求直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知是遞增數(shù)列,其前項和為,,且,.
(Ⅰ)求數(shù)列的通項;
(Ⅱ)是否存在使得成立?若存在,寫出一組符合條件的的值;若不存在,請說明理由;
(Ⅲ)設,若對于任意的,不等式
恒成立,求正整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為選拔參加“央視猜燈謎大賽”的隊員,在校內(nèi)組織猜燈謎競賽.規(guī)定:第一階段知識測試成績不小于160分的學生進入第二階段比賽.現(xiàn)有200名學生參加知識測試,并將所有測試成績繪制成如下所示的頻率分布直方圖.
(Ⅰ)估算這200名學生測試成績的中位數(shù),并求進入第二階段比賽的學生人數(shù);
(Ⅱ)將進入第二階段的學生分成若干隊進行比賽.現(xiàn)甲、乙兩隊在比賽中均已獲得120分,進入最后搶答階段.搶答規(guī)則:搶到的隊每次需猜3條謎語,猜對1條得20分,猜錯1條扣20分.根據(jù)經(jīng)驗,甲隊猜對每條謎語的概率均為 ,乙隊猜對前兩條的概率均為 ,猜對第3條的概率為 .若這兩隊搶到答題的機會均等,您做為場外觀眾想支持這兩隊中的優(yōu)勝隊,會把支持票投給哪隊?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某保險公司開設的某險種的基本保費為萬元,今年參加該保險的人來年繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人的下一年度的保費與其與本年度的出險次數(shù)的關聯(lián)如下:
本年度出險次數(shù) | ||||||
下一次保費(單位:萬元) |
設今年初次參保該險種的某人準備來年繼續(xù)參保該險種,且該參保人一年內(nèi)出險次數(shù)的概率分布列如下:
一年內(nèi)出險次數(shù) | ||||||
概率 |
()求此續(xù)保人來年的保費高于基本保費的概率.
()若現(xiàn)如此續(xù)保人來年的保費高于基本保費,求其保費比基本保費高出的概率.
()求該續(xù)保人來年的平均保費與基本保費的比值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com