【題目】已知函數(shù)是定義域為的奇函數(shù).

(1)求實數(shù)的值并判斷函數(shù)的單調(diào)性;

(2)當時,不等式恒成立,求實數(shù)的取值范圍.

【答案】(1)見解析(2).

【解析】分析:(1)由奇函數(shù)可得,解得,經(jīng)檢驗,當時,函數(shù)為奇函數(shù);利用指數(shù)函數(shù)的性質(zhì)可證明,從而可得結果;(2)結合函數(shù)的單調(diào)性與奇偶性可得,當時,不等式恒成立,等價于恒成立,換元后,利用二次函數(shù)的性質(zhì)列不等式組求解即可.

詳解(1)解法一:∵函數(shù)是定義域為的奇函數(shù),

,解得.

經(jīng)檢驗,當時,函數(shù)為奇函數(shù),即所求實數(shù)的值為.

,

上恒成立,所以上的減函數(shù).

解法二:∵函數(shù)是定義域為的奇函數(shù),

,解得.

經(jīng)檢驗,當時,函數(shù)為奇函數(shù),即所求實數(shù)的值為.

,

,

,∴,

,即

所以上的減函數(shù).

(2)由,可得.

上的奇函數(shù),∴,

上的減函數(shù),

所以恒成立,

,∵,∴,

恒成立,

,,

,解得,

所以實數(shù)的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形, , 垂直于底面, , , 分別為, 的中點.

(Ⅰ)求證: ;

(Ⅱ)求四棱錐的體積和截面的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)時,,求的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在中,,,,分別是中點,,.現(xiàn)將沿折起,如圖2所示,使二面角,的中點.

1)求證:面;

2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.

(1)證明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

已知是遞增數(shù)列,其前項和為,,且,

)求數(shù)列的通項

)是否存在使得成立?若存在,寫出一組符合條件的的值;若不存在,請說明理由;

)設,若對于任意的,不等式

恒成立,求正整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為選拔參加“央視猜燈謎大賽”的隊員,在校內(nèi)組織猜燈謎競賽.規(guī)定:第一階段知識測試成績不小于160分的學生進入第二階段比賽.現(xiàn)有200名學生參加知識測試,并將所有測試成績繪制成如下所示的頻率分布直方圖.
(Ⅰ)估算這200名學生測試成績的中位數(shù),并求進入第二階段比賽的學生人數(shù);
(Ⅱ)將進入第二階段的學生分成若干隊進行比賽.現(xiàn)甲、乙兩隊在比賽中均已獲得120分,進入最后搶答階段.搶答規(guī)則:搶到的隊每次需猜3條謎語,猜對1條得20分,猜錯1條扣20分.根據(jù)經(jīng)驗,甲隊猜對每條謎語的概率均為 ,乙隊猜對前兩條的概率均為 ,猜對第3條的概率為 .若這兩隊搶到答題的機會均等,您做為場外觀眾想支持這兩隊中的優(yōu)勝隊,會把支持票投給哪隊?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某保險公司開設的某險種的基本保費為萬元,今年參加該保險的人來年繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人的下一年度的保費與其與本年度的出險次數(shù)的關聯(lián)如下:

本年度出險次數(shù)

下一次保費(單位:萬元)

設今年初次參保該險種的某人準備來年繼續(xù)參保該險種,且該參保人一年內(nèi)出險次數(shù)的概率分布列如下:

一年內(nèi)出險次數(shù)

概率

求此續(xù)保人來年的保費高于基本保費的概率.

若現(xiàn)如此續(xù)保人來年的保費高于基本保費,求其保費比基本保費高出的概率.

)求該續(xù)保人來年的平均保費與基本保費的比值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義域上的單調(diào)遞增函數(shù)

(1)求證:命題“設,若,則”是真命題

(2)解關于的不等式

查看答案和解析>>

同步練習冊答案