5.一個水平放置的平面圖形的斜二測直觀圖是一個底角為45°,腰為$\sqrt{2}$,上底面為1的等腰梯形,則這個平面圖形的面積是4$\sqrt{2}$.

分析 根據(jù)斜二測化法規(guī)則畫出原平面圖形,求出面積即可.

解答 解:如圖所示:由已知斜二測直觀圖根據(jù)斜二測化法畫出原平面圖形,
所以BC=B′C′=1,
OA=O′A′=1+$\sqrt{{(\sqrt{2})}^{2}{+(\sqrt{2})}^{2}}$=3,
OC=2O′C′=2$\sqrt{2}$,
所以這個平面圖形的面積為
$\frac{1}{2}$×(1+3)×2$\sqrt{2}$=4$\sqrt{2}$.

故答案為:4$\sqrt{2}$.

點評 本題考查了斜二測直觀圖的應(yīng)用問題,根據(jù)斜二測畫法正確畫出原平面圖形是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.拋物線y=ax2(a≠0)的焦點坐標(biāo)為( 。
A.(0,$\frac{a}{4}$)或(0,-$\frac{a}{4}$)B.(0,$\frac{1}{4a}$)或(0,-$\frac{1}{4a}$)C.$(0,\frac{1}{4a})$D.$(\frac{1}{4a},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)已知在平面直角坐標(biāo)系中,直線l經(jīng)過點P(1,1),傾斜角α=$\frac{π}{6}$,寫出直線l的參數(shù)方程.
(2)極坐標(biāo)系中,已知圓ρ=10cos$({\frac{π}{3}-θ})$,將它化為直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在平面直角坐標(biāo)中,有不共線的三點A,B,C,已知AB,AC所在直線的斜率分別為k1,k2,則“k1k2>-1”是“∠BAC為銳角”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列三角函數(shù)值大小比較正確的是( 。
A.sin$\frac{19π}{8}$<cos$\frac{14π}{9}$B.sin(-$\frac{54π}{7}$)<sin(-$\frac{63π}{8}$)
C.tan(-$\frac{13π}{4}$)>tan(-$\frac{17π}{5}$)D.tan138°>tan143°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知圓C:(x-a)2+(y-a-2)2=9,其中a為實常數(shù).
(1)若直線l:x+y-4=0被圓C截得的弦長為2,求a的值;
(2)設(shè)點A(3,0),O為坐標(biāo)原點,若圓C上存在點M,使|MA|=2|MO|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.雙曲線$\frac{y^2}{9}-\frac{x^2}{4}=1$的漸近線方程為( 。
A.$y=±\frac{9}{4}x$B.$y=±\frac{4}{9}x$C.$y=±\frac{2}{3}x$D.$y=±\frac{3}{2}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知點A,B分別是橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左,右頂點,長軸長為4,離心率為$\frac{1}{2}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點P為橢圓C上除長軸頂點外的任一點,直線AP,PB與直線x=4分別交于點M,N,已知常數(shù)λ>0,求$λ\overrightarrow{PM}•\overrightarrow{PN}+\overrightarrow{PA}•\overrightarrow{PB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.正項等差數(shù)列{an}的前n項和為Sn,已知a4+a10-a72+15=0,則S13=( 。
A.-39B.5C.39D.65

查看答案和解析>>

同步練習(xí)冊答案