(本小題滿分14分)
已知函數(shù).
(Ⅰ)當時,求函數(shù)的圖象在處的切線方程;
(Ⅱ)判斷函數(shù)的單調(diào)性;
(Ⅲ)若函數(shù)在上為增函數(shù),求的取值范圍.
(Ⅰ).
(Ⅱ)當時,函數(shù)在單調(diào)遞增;
當時,函數(shù)在單調(diào)遞減,在上單調(diào)遞增.
(Ⅲ).
【解析】(I)當a=2時,先求出的值,即切線的斜率,然后寫出點斜式方程,再化成一般式即可.
(II)先求導(dǎo),可得,然后再對和a<0兩種情況進行討論研究其單調(diào)性.
(III)本小題轉(zhuǎn)化為在上恒成立,也可考慮求出f(x)的增區(qū)間D,然后根據(jù)求解也可.
(Ⅰ)當時,(),········································· 1分
∴,···································································· 2分
∴ ,所以所求的切線的斜率為3.······················································· 3分
又∵,所以切點為.
故所求的切線方程為:.······································································· 4分
(Ⅱ)∵,
∴······························································· 5分
①當時,∵,∴;····························································· 6分
②當時,
由,得;由,得;·························· 8分
綜上,當時,函數(shù)在單調(diào)遞增;
當時,函數(shù)在單調(diào)遞減,在上單調(diào)遞增.········ 9分
(Ⅲ)①當時,由(Ⅱ)可知,函數(shù)在單調(diào)遞增.此時,,故在上為增函數(shù).······································································································· 11分
②當時,由(Ⅱ)可知,函數(shù)在上單調(diào)遞增.
∵ 在上為增函數(shù),
∴ ,故,解得,
∴ .······························································································ 13分
綜上所述,的取值范圍為. 14分
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設(shè)A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com