已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<數(shù)學(xué)公式)的部分圖象如圖所示,則f(x)的解析式是


  1. A.
    f(x)=sin(3x+數(shù)學(xué)公式)(x∈R)
  2. B.
    f(x)=sin(2x+數(shù)學(xué)公式)x∈R
  3. C.
    數(shù)學(xué)公式
  4. D.
    f(x)=sin(2x+數(shù)學(xué)公式)(x∈R)
B
分析:首先根據(jù)函數(shù)圖象得函數(shù)的最大值為2,得到A=2,然后算出函數(shù)的周期T=π,利用周期的公式,得到ω=2,最后將點(diǎn)(,2)代入,得:2=2sin(2×+φ),結(jié)合|φ|<,可得φ=,所以f(x)的解析式是f(x)=sin(2x+).
解答:∵函數(shù)圖象經(jīng)過(guò)點(diǎn)(,2)
∴函數(shù)的最大值為2,可得A=2
又∵函數(shù)的周期T=4(-)=π,
=π,可得ω=2
因此函數(shù)解析式為:f(x)=2sin(2x+φ),
再將點(diǎn)(,2)代入,得:2=2sin(2×+φ),
解之得φ=,(k∈Z)
∵|φ|<,∴取k=0,得φ=
所以f(x)的解析式是f(x)=sin(2x+)x∈R
故選B
點(diǎn)評(píng):本題給出了函數(shù)y=Asin(ωx+φ)的部分圖象,要確定其解析式,著重考查了三角函數(shù)基本概念和函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì)的知識(shí)點(diǎn),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案