20.已知等差數(shù)列{an}的首項為a1,公差為d,且a11=26,a51=54,
(1)求公差d及數(shù)列{an}的通項公式;
(2)該數(shù)列從第幾項開始為正數(shù)項.

分析 (1)利用等差數(shù)列的通項公式即可得出.
(2)令an>0,即可得出.

解答 解:(1)∵a11=26,a51=54,∴a1+10d=26,a1+50d=54,解得a1=19,d=$\frac{7}{10}$.
∴an=19+$\frac{7}{10}$(n-1)=$\frac{7n-183}{10}$.
(2)令an>0,解得n>$\frac{183}{7}$=26+$\frac{1}{7}$,
因此該數(shù)列從第27項開始為正數(shù)項.

點評 本題考查了等差數(shù)列的通項公式、不等式的解法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.對于函數(shù)f(x)=a+$\frac{2}{{{3^x}+1}}$(a∈R)
(1)若a=-1時,證明函數(shù)f(x)是奇函數(shù);
(2)判斷函數(shù)f(x)的單調(diào)性并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}+4x-3,\;x≤1\\ lnx,\;x>1\end{array}$,若f(x)=a(x-1)有且只有一個實數(shù)解,則a的取值范圍是(  )
A.[1,2]B.(-∞,0]C.(-∞,0]∪[1,2]D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知Z=-2+3i,求|Z|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{13}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,a=$\sqrt{6}$,b=2$\sqrt{3}$,A=30°,則角B45°或135°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.雙曲線x2-y2=2015的左,右頂點分別為A,B,P為其右支上不同于B的一點,且∠APB=2∠PAB,則∠PAB=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=4$\sqrt{3}$sin(ωx+$\frac{π}{3}$)(ω>0)在平面直角坐標(biāo)系中的部分圖象如圖所示,若∠ABC=90°,則ω=( 。
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,在四棱錐P-ABCD中,底面四邊形ABCD為等腰梯形,E為PD中點,PA⊥平面ABCD,AD∥BC,AC⊥BD,AD=2BC=4.
(1)證明:平面EBD⊥平面PAC;
(2)若直線PD與平面PAC所成的角為30°,求二面角A-BE-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=ln(2x2+2)的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案