17.正四棱錐的底面邊長為12cm,側(cè)棱長為10cm,求此正四棱錐的高和斜高.

分析 畫出圖來,根據(jù)側(cè)棱與高及底面對角線的一半構成直角三角形求解.

解答 解:∵正四棱錐底面邊長為12cm,側(cè)棱長為10cm,
如圖所示:SB=10,OB=6$\sqrt{2}$,OE=6,
∴SO=$\sqrt{S{B}^{2}-O{B}^{2}}$=$\sqrt{100-72}$=2$\sqrt{7}$cm,
SE=$\sqrt{O{E}^{2}+S{O}^{2}}$=$\sqrt{28+36}$=8cm.
正四棱錐的高為:2$\sqrt{7}$cm;斜高為:8cm.

點評 本題考查正三棱錐的斜高的求法,是基礎題,解題時要認真審題,注意勾股定理的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.在四棱錐中P-ABCD,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=$\frac{{\sqrt{2}}}{2}$AD、E、F,分別為PC、BD的中點.
(1)求證:EF∥平面PAD;
(2)在線段AB上是否存在點G,使得二面角C-PD-G的余弦值為$\frac{{\sqrt{3}}}{3}$,若存在,請求出點G的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知圓C的圓心為(3,1),且圓C與直線y=x相切.
(1)圓C的方程是(x-3)2+(y-1)2=2;
(2)若圓C與直線l:x-y+a=0(a≠0)交于A、B兩點,且|AB|=2,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知直線x+ay=1-a與直線(a-2)x+3y+2=0垂直,則實數(shù)a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知三棱柱ABC-A1B1C1中,底面三角形ABC是直角三角形,四邊形A1ACC1和四邊形A1ABB1均為正方形,D,E,F(xiàn)分別是A1B1,C1C,BC的中點,AB=1.
(Ⅰ)證明:DF⊥平面ABE;
(Ⅱ)求三棱錐A1-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設f(x)=asin(πx+α)+bcos(πx+β)+4 (a、b、α、β為常數(shù)),且f(2000)=5,那么f(2009)等于( 。
A.1B.3C.5D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在△ABC中,“A=$\frac{π}{4}$”是“sinA=$\frac{\sqrt{2}}{2}$”的( 。
A.充分非必要條件B.必要非充分條件
C.充分必要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若函數(shù)y=log2(kx2-2kx+8)的定義域為一切實數(shù),則實數(shù)k的取值范圍為[0,8).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若函數(shù)f(x)=(a-2)xa是冪函數(shù),則a=3.

查看答案和解析>>

同步練習冊答案