【題目】已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和Sn>1,且6Sn=(an+1)(an+2),n∈N* .
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿(mǎn)足bn= ,求{bn}的前n項(xiàng)和.
【答案】
(1)解:∵6Sn=(an+1)(an+2),
∴6Sn+1=(an+1+1)(an+1+2),
∴(an+an﹣1)(an﹣an﹣1﹣3)=0,
∵an>0,
∴an﹣an﹣1=3,
∴{an}為等差數(shù)列
∵6S1=(a1+1)(a1+2),
∵a1>1,
∴a1=2,
∴an=3n﹣1
(2)解:bn= = = ( ﹣ ),
∴{bn}的前n項(xiàng)和為 ( ﹣ )= ( ﹣ )
【解析】(1)由6Sn=(an+1)(an+2)得到6Sn+1=(an+1+1)(an+1+2),兩式作差,即可證明{an}為等差數(shù)列,從而求出an . (2)由an=3n﹣1,推導(dǎo)出bn= ( ﹣ ),由此利用裂項(xiàng)求和法能求出數(shù)列{bn}的前n.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xlnx,g(x)= .
(Ⅰ)記F(x)=f(x)﹣g(x),判斷F(x)在區(qū)間(1,2)內(nèi)零點(diǎn)個(gè)數(shù)并說(shuō)明理由;
(Ⅱ)記(Ⅰ)中的F(x)在(1,2)內(nèi)的零點(diǎn)為x0 , m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有兩個(gè)不等實(shí)根x1 , x2(x1<x2),判斷x1+x2與2x0的大小,并給出對(duì)應(yīng)的證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中, 分別是棱的中點(diǎn), 為棱上一點(diǎn),且異面直線(xiàn)與所成角的余弦值為.
(1)證明: 為的中點(diǎn);
(2)求平面與平面所成銳二面角的余弦值.
【答案】(1)見(jiàn)解析(2)
【解析】試題分析:(1)以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,不妨令正方體的棱長(zhǎng)為2,設(shè),利用,解得,即可證得;
(2)分別求得平面與平面的法向量,利用求解即可.
試題解析:
(1)證明:以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.
不妨令正方體的棱長(zhǎng)為2,
則, , , , ,
設(shè),則, ,
所以 ,
所以,解得(舍去),即為的中點(diǎn).
(2)解:由(1)可得, ,
設(shè)是平面的法向量,
則.令,得.
易得平面的一個(gè)法向量為,
所以.
所以所求銳二面角的余弦值為.
點(diǎn)睛:空間向量解答立體幾何問(wèn)題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫(xiě)出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線(xiàn)的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線(xiàn)垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.
【題型】解答題
【結(jié)束】
22
【題目】已知橢圓的短軸長(zhǎng)為2,且橢圓過(guò)點(diǎn).
(1)求橢圓的方程;
(2)設(shè)直線(xiàn)過(guò)定點(diǎn),且斜率為,若橢圓上存在兩點(diǎn)關(guān)于直線(xiàn)對(duì)稱(chēng), 為坐標(biāo)原點(diǎn),求的取值范圍及面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且.
(1)判斷函數(shù)的奇偶性;
(2) 判斷函數(shù)在(1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓錐OO1的體積為π.設(shè)它的底面半徑為x,側(cè)面積為S.
(1)試寫(xiě)出S關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)圓錐底面半徑x為多少時(shí),圓錐的側(cè)面積最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),是定義域?yàn)?/span>的奇函數(shù).
(1)確定的值;
(2)若,函數(shù),,求的最小值;
(3)若,是否存在正整數(shù),使得對(duì)恒成立?若存在,請(qǐng)求出所有的正整數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某機(jī)構(gòu)在某一學(xué)校隨機(jī)抽取30名學(xué)生參加環(huán)保知識(shí)測(cè)試,測(cè)試成績(jī)(單位:分)如圖所示,假設(shè)得分值的中位數(shù)為me , 眾數(shù)為m0 , 平均值為 ,則( )
A.me=m0=
B.me=m0<
C.me<m0<
D.m0<me<
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于區(qū)間,若函數(shù)同時(shí)滿(mǎn)足:①在上是單調(diào)函數(shù);②函數(shù),的值域是,則稱(chēng)區(qū)間為函數(shù)的“保值”區(qū)間.
(1)求函數(shù)的所有“保值”區(qū)間.
(2)函數(shù)是否存在“保值”區(qū)間?若存在,求出的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com