自來水公司為鼓勵(lì)居民節(jié)約用水,采取按月用水量分段收費(fèi)辦法,若居民應(yīng)交水費(fèi)y(元)與用水量x(噸)的函數(shù)關(guān)系如圖所示.
(1)寫出y=f(x)的解析式;
(2)若某用戶該月用水21噸,則該用戶需要繳水費(fèi)多少錢?
考點(diǎn):函數(shù)解析式的求解及常用方法
專題:應(yīng)用題,數(shù)形結(jié)合法
分析:利用圖形求出兩段函數(shù)式子,分段表示.在利用函數(shù)解析式求出f(21)函數(shù)值,就能夠得到用戶需要繳的水費(fèi).
解答: 解:(1)設(shè)直線OA的解析式為y=ax(0≤x≤15),依題意得,
把點(diǎn)A(15,27)代入得,15a=27   解得 a=1.8
則直線OA的解析式為y=1.8x(0≤x≤15)
設(shè)直線AB的解析式為y=ax+b (x>15)
把點(diǎn)A(15,27)和點(diǎn)(20,39.5)代入得 
15a+b=27
20a+b=39.5
解得
a=2.5
b=-10.5

則直線AB的解析式為y=2.5x-10.5(x>15)
即 y=f(x)=
1.8x(0≤x≤15)
2.5x-10.5(x>15)

(2)當(dāng)x=21時(shí),y=2.5×21-10.5=42
若該用戶用水21噸,則該用戶需交水費(fèi)42元.
點(diǎn)評:本題考查了函數(shù)在實(shí)際問題中的應(yīng)用,所求函數(shù)的解析都是一次函數(shù),計(jì)算量不大,關(guān)鍵是根據(jù)圖形設(shè)函數(shù)的解析式,在代入點(diǎn)的坐標(biāo)即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l
x
m
+
y
4-m
=1.
(1)若直線的斜率小于2,求實(shí)數(shù)m的取值范圍;
(2)若直線分別與x軸、y軸的正半軸交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),求△AOB面積的最小值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
2an+1
(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)設(shè)
2
bn
=
1
an
+1,求數(shù)列{bn•bn+1}的前n項(xiàng)和Tn
(3)在(2)的條件下,求數(shù)列{
1
an
•2 
1
bn
}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓C右焦點(diǎn)F(1,0),且e=
1
2

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l:y=kx+m與橢圓C相交于A,B兩點(diǎn)(A,B都不是頂點(diǎn)),且以AB為直徑的圓過橢圓C的右頂點(diǎn),求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果sin(3π+θ)=
1
4
,求:
cos(π+θ)
cosθ[cos(π+θ)-1]
+
cos(θ-2π)
cos(θ+2π)cos(π+θ)+cos(-θ)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠在甲、乙兩地的兩個(gè)分工廠各生產(chǎn)某種機(jī)器12臺和6臺,現(xiàn)銷售給A地10臺,B地8臺.已知從甲地調(diào)運(yùn)1臺至A地、B地的費(fèi)用分別為400元和800元,從乙地調(diào)運(yùn)1臺至A地、B地的費(fèi)用分別為300元和500元.
(1)設(shè)從乙地調(diào)運(yùn)x臺至A地,求總費(fèi)用y關(guān)于x的函數(shù)關(guān)系式并求定義域;
(2)若總費(fèi)用不超過9000元,則共有幾種調(diào)運(yùn)方法?
(3)求出總費(fèi)用最低的調(diào)運(yùn)方案及最低費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+ax2+bx在區(qū)間(-2,1)內(nèi),當(dāng)x=-1時(shí)取得極小值,當(dāng)x=
2
3
時(shí)取得極大值.
(1)求函數(shù)y=f(x)在x=-2時(shí)的對應(yīng)點(diǎn)的切線方程.
(2)求函數(shù)f(x)在[-2,1]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
3
sinωx•cosωx+sin2ωx+k,(ω>0).
(1)若f(x)圖象中相鄰兩條對稱軸間的距離不小于
π
2
,求ω的取值范圍;
(2)若f(x)的最小正周期為π,且當(dāng)x∈[-
π
6
,
π
6
]時(shí),f(x)的最大值是
1
2
,求f(x)最小值,并說明如何由y=sin2x的圖象變換得到y(tǒng)=f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果a>b,給出下列不等式:(1)
1
a
1
b
;(2)a3>b3;(3)a2+1>b2+1;(4)2a>2b.其中正確的是
 
.(把你認(rèn)為正確的序號填上)

查看答案和解析>>

同步練習(xí)冊答案