【題目】某超市從2014年甲、乙兩種酸奶的日銷售量(單位:箱)的數(shù)據(jù)中分別隨機抽取100個,并按[ 0,10],(10,20],(20,30],(30,40],(4050]分組,得到頻率分布直方圖如下:

假設(shè)甲、乙兩種酸奶獨立銷售且日銷售量相互獨立.

1)寫出頻率分布直方圖(甲)中的的值;記甲種酸奶與乙種酸奶日銷售量(單位:箱)的方差分別為,,試比較的大;(只需寫出結(jié)論)

2)估計在未來的某一天里,甲、乙兩種酸奶的銷售量恰有一個高于20箱且另一個不高于20箱的概率;

3)設(shè)表示在未來3天內(nèi)甲種酸奶的日銷售量不高于20箱的天數(shù),以日銷售量落入各組的頻率作為概率,求的數(shù)學(xué)期望.

【答案】1;(2042;(309

【解析】

試題()由各個小矩形的面積和為1,先求出,由頻率分布直方圖可看出,甲的銷售量比較分散,而乙較為集中,由此可得出的大小關(guān)系;()首先設(shè)事件:在未來的某一天里,甲種酸奶的銷售量不高于20箱;事件:在未來的某一天里,乙種酸奶的銷售量不高于20箱;事件:在未來的某一天里,甲、乙兩種酸奶的銷售量恰好一個高于20箱且另一個不高于20箱;然后分別求出事件和事件的概率,最后由相互獨立事件的概率乘法計算公式即可得出所求的結(jié)果;()首先由題意可知的可能取值為01,23,然后運用相互獨立重復(fù)試驗的概率計算公式分別計算相應(yīng)的概率,最后得出其分布列即可.

試題解析:()由各小矩形的面積和為1可得:,解之的

;由頻率分布直方圖可看出,甲的銷售量比較分散,而乙較為集中,主要集中在箱,故

)設(shè)事件:在未來的某一天里,甲種酸奶的銷售量不高于20箱;事件:在未來的某一天里,乙種酸奶的銷售量不高于20箱;事件:在未來的某一天里,甲、乙兩種酸奶的銷售量恰好一個高于20箱且另一個不高于20箱.則,.所以

)由題意可知,的可能取值為0,1,2,3

,,

,

所以的分布列為


0

1

2

3


0343

0441

0189

0027

所以的數(shù)學(xué)期望

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)求函數(shù)在點點處的切線方程;

(Ⅱ)當(dāng)時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的方程為,集合,若對于任意的,都存在,使得成立,則稱曲線曲線,下列方程所表示的曲線中,是曲線的有______(寫出所有曲線的序號)

;②;③;④;⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)舉辦“父母養(yǎng)育我,我報父母恩”的活動,對六個年級(一年級到六年級的年級代碼分別為1,2…,6)的學(xué)生給父母洗腳的百分比y%進行了調(diào)查統(tǒng)計,繪制得到下面的散點圖.

(1)由散點圖看出,可用線性回歸模型擬合y與x的關(guān)系,請用相關(guān)系數(shù)加以說明;

(2)建立y關(guān)于x的回歸方程,并據(jù)此預(yù)計該校學(xué)生升入中學(xué)的第一年(年級代碼為7)給父母洗腳的百分比.

附注:參考數(shù)據(jù):

參考公式:相關(guān)系數(shù),若r>0.95,則y與x的線性相關(guān)程度相當(dāng)高,可用線性回歸模型擬合y與x的關(guān)系.回歸方程中斜率與截距的最小二乘估計公式分別為 ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,函數(shù)在第一象限內(nèi)的圖像如圖所示,試做如下操作:把x軸上的區(qū)間等分成n個小區(qū)間,在每一個小區(qū)間上作一個小矩形,使矩形的右端點落在函數(shù)的圖像上.若用表示第k個矩形的面積,表示這n個叫矩形的面積總和.

1)求的表達式;

2)利用數(shù)學(xué)歸納法證明,并求出的表達式

3)求的值,并說明的幾何意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點為極點,軸的非負半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為為曲線上的動點,軸、軸的正半軸分別交于,兩點.

(1)求線段中點的軌跡的參數(shù)方程;

(2)若是(1)中點的軌跡上的動點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,其中,點是橢圓的右頂點,射線與橢圓的交點為.

1)求點的坐標(biāo);

2)設(shè)橢圓的長半軸、短半軸的長分別為、,當(dāng)的值在區(qū)間中變化時,求的取值范圍;

3)在(2)的條件下,以為焦點,為頂點且開口方向向左的拋物線過點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司航拍宣傳畫報,為了凸顯公司文化,選擇如圖所示的邊長為2百米的正三角形空地進行布置拍攝場景,在的中點處安裝中央聚光燈,為邊上得可以自由滑動的動點,其中設(shè)置為普通色彩燈帶(燈帶長度可以自由伸縮),線段部分需要材料 (單位:百米)裝飾用以增加拍攝效果因材料價格昂貴,所以公司要求采購材料使用不造成浪費.

(1)當(dāng)垂直時,采購部需要采購多少百米材料

(2)為了增加拍攝動態(tài)效果需要,現(xiàn)要求點邊上滑動,且,則購買材料的范圍是多少才能滿足動態(tài)效果需要又不會造成浪費.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場營銷人員進行某商品的市場營銷調(diào)查時發(fā)現(xiàn),每回饋消費者一定的點數(shù),該商品每天的銷量就會發(fā)生一定的變化,經(jīng)過試點統(tǒng)計得到以下表:

反饋點數(shù)t

1

2

3

4

5

銷量(百件)/天

0.5

0.6

1

1.4

1.7

(Ⅰ)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合當(dāng)?shù)卦撋唐蜂N量(千件)與返還點數(shù)之間的相關(guān)關(guān)系.試預(yù)測若返回6個點時該商品每天的銷量;

(Ⅱ)若節(jié)日期間營銷部對商品進行新一輪調(diào)整.已知某地擬購買該商品的消費群體十分龐大,經(jīng)營銷調(diào)研機構(gòu)對其中的200名消費者的返點數(shù)額的心理預(yù)期值進行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:

返還點數(shù)預(yù)期值區(qū)間

(百分比)

[1,3)

[3,5)

[5,7)

[7,9)

[9,11)

[11,13)

頻數(shù)

20

60

60

30

20

10

將對返點點數(shù)的心理預(yù)期值在的消費者分別定義為“欲望緊縮型”消費者和“欲望膨脹型”消費者,現(xiàn)采用分層抽樣的方法從位于這兩個區(qū)間的30名消費者中隨機抽取6名,再從這6人中隨機抽取3名進行跟蹤調(diào)查,求抽出的3人中至少有1名“欲望膨脹型”消費者的概率.

查看答案和解析>>

同步練習(xí)冊答案