在長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=2,AA1=1,則異面直線A1C1和AB1所成角的余弦值為(  )
分析:連接C1D,則C1D∥AB1,故∠A1C1D(或其補(bǔ)角)是異面直線A1C1和AB1所成角,在△A1C1D中,利用余弦定理可得結(jié)論.
解答:解:連接C1D,則C1D∥AB1,∴∠A1C1D(或其補(bǔ)角)是異面直線A1C1和AB1所成角

在△A1C1D中,A1C1=2
2
,A1D=C1D=
5
,
∴cos∠A1C1D=
8+5-5
2×2
2
×
5
=
10
5

故選A.
點(diǎn)評(píng):本題考查異面直線所成角,考查余弦定理的運(yùn)用,確定異面直線所成角是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在長(zhǎng)方體ABCD-A'B'C'D'中,AB=
3
,AD=
3
,AA′=1,則AA′和BC′所成的角是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長(zhǎng)方體ABCD-A′B′C′D′中,用截面截下一個(gè)棱錐C-A′DD′,求棱錐C-A′DD′的體積與剩余部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海) 如圖,在長(zhǎng)方體ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.證明直線BC′平行于平面D′AC,并求直線BC′到平面D′AC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•青浦區(qū)二模)(理)在長(zhǎng)方體ABCD-A'B'C'D'中,AB=2,AD=1,AA'=1.
求:
(1)頂點(diǎn)D'到平面B'AC的距離;
(2)二面角B-AC-B'的大小.(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知在長(zhǎng)方體ABCD-A′B′C′D′中,點(diǎn)E為棱CC′上任意一點(diǎn),AB=BC=2,CC′=1.
(Ⅰ)求證:平面ACC′A′⊥平面BDE;
(Ⅱ)若點(diǎn)P為棱C′D′的中點(diǎn),點(diǎn)E為棱CC′的中點(diǎn),求二面角P-BD-E的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案