19.已知a>0,b>0且ab=a+b,則a+4b的最小值為9.

分析 由條件可得$\frac{1}{a}$+$\frac{1}$=1,即有∴(a+4b)($\frac{1}{a}$+$\frac{1}$)=1+4+$\frac{4b}{a}$+$\frac{a}$,再由基本不等式可得最小值,注意等號成立的條件.

解答 解:∵a>0,b>0且ab=a+b,
∴$\frac{1}{a}$+$\frac{1}$=1,
∴(a+4b)($\frac{1}{a}$+$\frac{1}$)=1+4+$\frac{4b}{a}$+$\frac{a}$≥5+2$\sqrt{\frac{4b}{a}×\frac{a}}$=9,當且僅當a=3,b=$\frac{3}{2}$,取等號,
∴a+4b取得最小值9;
故答案為:9

點評 本題考查基本不等式的運用:求最值,注意運用變形和乘1法,以及滿足的條件:一正二定三等,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某高校從5名男大學(xué)生志愿者和4名女大學(xué)生志愿者中選出3名派到3所學(xué)校支教(每所學(xué)校一名志愿者),要求這3名志愿者中男、女大學(xué)生都有,則不同的選派方案共有(  )
A.210種B.420種C.630種D.840種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.不等式($\frac{1}{2}$)x>$\root{3}{4}$的解集為(-∞,$-\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(λ,-1),若$\overrightarrow{a}$,$\overrightarrow$夾角為鈍角,則λ的取值范圍是(-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.等比數(shù)列{an}中,a8=1,公差q=$\frac{1}{2}$,則該數(shù)列前8項的和S8=( 。
A.254B.255C.256D.512

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知正四面體ABCD的棱長為2,E為棱AB的中點,過E作其外接球的截面,則截面面積的最小值為$\frac{1}{2}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.空間兩個角α,β滿足α與β的兩邊平行,若α=50°,求角β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知曲線C的圖形如圖所示,其上半部分是半橢圓$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(y≥0)$,下半部分是半圓x2+y2=b2(y≤0),(a>b>0),半橢圓內(nèi)切于矩形ABCD,且CD交y軸于點G,點P是半圓上異于A,B的任意一點,當點P位于點$M(\frac{{\sqrt{6}}}{3},-\frac{{\sqrt{3}}}{3})$時,△AGP的面積最大.
(1)求曲線C的方程;
(2)連接PC,PD分別交AB于E,F(xiàn),求證:AE2+BF2是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在標準情況下,同時建立直角坐標系與極坐標系已知圓:ρ=4cosθ,直線$\left\{{\begin{array}{l}{x=a-\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$.
(1)求圓的參數(shù)方程;
(2)若直線與圓相切,求a及直線的極坐標方程.

查看答案和解析>>

同步練習(xí)冊答案