【題目】設(shè) (n∈N*,an∈Z,bn∈Z).
(1)求證:an2﹣8bn2能被7整除;
(2)求證:bn不能被5整除.
【答案】
(1)證明:( 1+2 )2n+1 + (2 )+ (2 )2+…+ (2 )2n+1,
(1﹣2 )2n+1= ﹣ (2 )+ (2 )2+…﹣ (2 )2n+1,
由(1+2 )2n+1=an+2 bn,(1﹣2 )2n+1=an﹣2 bn,
(1+2 )2n+1(1﹣2 )2n+1=(an+2 bn)(an﹣2 bn),
即an2﹣8bn2=﹣72n+1,
∴an2﹣8bn2能被7整除;
(2)由an2﹣8bn2=﹣72n+1,則8bn2=an2+72n+1,
由72n=49n=(50﹣1)n= ×50n+ ×50n﹣1×(﹣1)1+…+ ×50×(﹣1)n﹣1+ ×(﹣1)n,
除最后一項(xiàng)都是5的倍數(shù),
∴72n+1的余數(shù)是2或﹣2,
由an2的是平方數(shù),其尾數(shù)為0,1,4,5,6,9,
∴an2+72n+1的尾數(shù)不可能是0或5,
∴an2+72n+1不能被5整除,
即8bn2不能被5整除,
∴bn不能被5整除.
【解析】(1)利用二項(xiàng)式定理展開( 1+2)2n+1與( 1-2)2n+1得到(1+2)2n+1=an+2bn,(1﹣2)2n+1=an﹣2bn,即可證明;(2)利用尾數(shù)為0或5的數(shù)能被5整除進(jìn)行證明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義某種運(yùn)算S=ab,運(yùn)算原理如圖所示,則式子[(2tan )lg ]+[lne( )﹣1]的值為( )
A.4
B.8
C.10
D.13
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 設(shè)方程f(x)=2﹣x+b(b∈R)的四個(gè)實(shí)根從小到大依次為x1 , x2 , x3 , x4 , 對于滿足條件的任意一組實(shí)根,下列判斷中一定成立的是( )
A.x1+x2=2
B.e2<x3x4<(2e﹣1)2
C.0<(2e﹣x3)(2e﹣x4)<1
D.1<x1x2<e2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y=2x2 , 直線l:y=kx+2交C于A、B兩點(diǎn),M是AB 的中點(diǎn),過M作x 軸的垂線交C于N點(diǎn).
(Ⅰ)證明:拋物線C在N 點(diǎn)處的切線與AB 平行;
(Ⅱ)是否存在實(shí)數(shù)k,使以AB為直徑的圓M經(jīng)過N點(diǎn)?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,過點(diǎn)P(0,1)且互相垂直的兩條直線分別與
圓O:x2+y2=4交于點(diǎn)A,B,與圓M:(x﹣2)2+(y﹣1)2=1交于點(diǎn)C,D.
(1)若 ,求CD的長;
(2)若CD中點(diǎn)為E,求△ABE面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , .
(1)求函數(shù)f(x)的值域;
(2)已知銳角△ABC的兩邊長a,b分別為函數(shù)f(x)的最小值與最大值,且△ABC的外接圓半徑為 ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知直線l的普通方程為x﹣y﹣2=0,曲線C的參數(shù)方程為 (θ為參數(shù)),設(shè)直線l與曲線C交于A,B兩點(diǎn).若點(diǎn)P在曲線C上運(yùn)動(dòng),當(dāng)△PAB的面積最大時(shí),求點(diǎn)P的坐標(biāo)及△PAB的最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,其前n項(xiàng)和為Sn , 且a1a5=64,S5﹣S3=48.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)有正整數(shù)m,l(5<m<l),使得am , 5a5 , al成等差數(shù)列,求m,l的值;
(3)設(shè)k,m,l∈N*,k<m<1,對于給定的k,求三個(gè)數(shù) 5ak , am , al經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C 的參數(shù)方程為 (α為參數(shù)),以直角坐標(biāo)系原點(diǎn)O 為極點(diǎn),x 軸正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C 的極坐標(biāo)方程;
(Ⅱ)設(shè)l1:θ= ,l2:θ= ,若l 1、l2與曲線C 相交于異于原點(diǎn)的兩點(diǎn) A、B,求△AOB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com