分析 由α為第三象限的角,判斷出2α可能的范圍,再結(jié)合又cos2α=-$\frac{3}{5}$<0確定出2α在第二象限,利用同角三角函數(shù)關(guān)系求出其正弦,再由兩角和的正切公式展開代入求值.
解答 解:因?yàn)椋害翞榈谌笙薜慕牵?br />所以:2α∈(2(2k+1)π,π+2(2k+1)π)(k∈Z),
又cos2α=-$\frac{3}{5}$<0,
所以:2α∈($\frac{π}{2}$+2(2k+1)π,π+2(2k+1)π)(k∈Z),
于是:有sin2α=$\frac{4}{5}$,tan2α=$\frac{sin2α}{cos2α}$=-$\frac{4}{3}$,
所以:tan(π-2α)=-tan2α=$\frac{4}{3}$.
故答案為:$\frac{4}{3}$.
點(diǎn)評(píng) 本小題主要考查三角函數(shù)值符號(hào)的判斷、同角三角函數(shù)關(guān)系、和角的正切公式,同時(shí)考查了基本運(yùn)算能力及等價(jià)變換的解題技能,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({\sqrt{2},+∞})$ | B. | $({\sqrt{2},2})$ | C. | $({2,2+\sqrt{2}})$ | D. | $({\sqrt{5},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3n(2n-1) | B. | 3n(2n+1) | C. | $\frac{3n(n+1)}{2}$ | D. | $\frac{3n(n-1)}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com