4.函數(shù)y=$\frac{{{{log}_2}(x-3)}}{{\sqrt{4-x}}}$的定義域是( 。
A.(-∞,4)B.(-∞,4]C.(3,4]D.(3,4)

分析 根據(jù)對數(shù)函數(shù)的性質(zhì)以及二次根式的性質(zhì)得到關(guān)于x的不等式組,解出即可.

解答 解:由題意得:
$\left\{\begin{array}{l}{x-3>0}\\{4-x>0}\end{array}\right.$,解得:3<x<4,
故選:D.

點評 本題考查了求函數(shù)的定義域問題,考查對數(shù)函數(shù)的性質(zhì)以及二次根式的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)向量$\overrightarrow a$,$\overrightarrow b$滿足|${\overrightarrow a$+$\overrightarrow b}$|=$\sqrt{10}$,|${\overrightarrow a$-$\overrightarrow b}$|=$\sqrt{6}$,則$\overrightarrow a$•$\overrightarrow b$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.命題p:“方程$\frac{x^2}{m}$+$\frac{y^2}{2}$=1是焦點在x軸上的橢圓”;命題q:“已知函數(shù)f(x)=$\frac{4}{3}$x3-2mx2+(4m-3)x,方程f'(x)=0沒有實數(shù)根”.若“p且q”是假命題,“p或q”是真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若一個三角形的平行投影仍是三角形,則下列命題:
①三角形的高線的平行投影,一定是這個三角形的平行投影的高線;
②三角形的中線的平行投影,一定是這個三角形的平行投影的中線;
③三角形的角平分線的平行投影,一定是這個三角形的平行投影的角平分線;
④三角形的中位線的平行投影,一定是這個三角形的平行投影的中位線.
其中正確的命題有( 。
A.①②B.②③C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)f(x)=ax2+bx,且-1≤f(-1)≤2,2≤f(1)≤4.求f(-2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.定義域為[a2-3a-2,4]的函數(shù)f(x)是偶函數(shù),則a=1或2-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知圓C:(x-1)2+y2=2,過點A(-1,0)的直線l將圓C分成弧長之比為1:3的兩段圓弧,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.角α終邊上有一點($\sqrt{3}$,1),若α>0,則α的最小值為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)已知a,b都是正實數(shù),求證:$\frac{{a}^{2}}$≥2a-b;
(2)已知a,b是任意實數(shù)  求證:a2+b2+3≥ab+$\sqrt{3}$(a+b)

查看答案和解析>>

同步練習(xí)冊答案