【題目】某青少年成長(zhǎng)關(guān)愛(ài)機(jī)構(gòu)為了調(diào)研所在地區(qū)青少年的年齡與身高壯況,隨機(jī)抽取6歲,9歲,12歲,15歲,18歲的青少年身高數(shù)據(jù)各1000個(gè),根據(jù)各年齡段平均身高作出如圖所示的散點(diǎn)圖和回歸直線.根據(jù)圖中數(shù)據(jù),下列對(duì)該樣本描述錯(cuò)誤的是( )

A. 據(jù)樣本數(shù)據(jù)估計(jì),該地區(qū)青少年身高與年齡成正相關(guān)

B. 所抽取數(shù)據(jù)中,5000名青少年平均身高約為

C. 直線的斜率的值近似等于樣本中青少年平均身高每年的增量

D. 從這5種年齡的青少年中各取一人的身高數(shù)據(jù),由這5人的平均年齡和平均身高數(shù)據(jù)作出的點(diǎn)一定在直線

【答案】D

【解析】在給定范圍內(nèi),隨著年齡增加,年齡越大身高越高,故該地區(qū)青少年身高與年齡成正相關(guān),故A正確;用樣本數(shù)據(jù)估計(jì)總體可得平均數(shù)大約是,故B正確;根據(jù)直線斜率的意義可知斜率的值近似等于樣本中青少年平均身高每年的增量,故C正確;各取一人具有隨機(jī)性,根據(jù)數(shù)據(jù)做出的點(diǎn)只能在直線附近,不一定在直線上,故D錯(cuò)誤,故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題,其中m,n,l為直線,α,β為平面
①mα,nα,m∥β,n∥βα∥β;
②設(shè)l是平面α內(nèi)任意一條直線,且l∥βα∥β;
③若α∥β,mα,nβm∥n;
④若α∥β,mαm∥β.
其中正確的是( 。
A.①②
B.②③
C.②④
D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)五邊形中,

,沿折到的位置,得到四棱錐,如圖(2),點(diǎn)為線段的中點(diǎn),且平面.

1)求證:平面平面;

2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面是矩形,PA⊥底面ABCD,PA=AD,點(diǎn)E、F分別為棱AB、PD的中點(diǎn). (Ⅰ)求證:AF∥平面PCE;
(Ⅱ)AD與平面PCD所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知圓G:x2﹣x+y2=0,經(jīng)過(guò)拋物線y2=2px的焦點(diǎn),過(guò)點(diǎn)(m,0)(m<0)傾斜角為 的直線l交拋物線于C,D兩點(diǎn). (Ⅰ)求拋物線的方程;
(Ⅱ)若焦點(diǎn)F在以線段CD為直徑的圓E的外部,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】網(wǎng)購(gòu)是當(dāng)前民眾購(gòu)物的新方式,某公司為改進(jìn)營(yíng)銷方式,隨機(jī)調(diào)查了100名市民,統(tǒng)計(jì)其周平均網(wǎng)購(gòu)的次數(shù),并整理得到如下的頻數(shù)分布直方圖.這100名市民中,年齡不超過(guò)40歲的有65人將所抽樣本中周平均網(wǎng)購(gòu)次數(shù)不小于4次的市民稱為網(wǎng)購(gòu)迷,且已知其中有5名市民的年齡超過(guò)40歲.

(1)根據(jù)已知條件完成下面的列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為網(wǎng)購(gòu)迷與年齡不超過(guò)40歲有關(guān)?

網(wǎng)購(gòu)迷

非網(wǎng)購(gòu)迷

合計(jì)

年齡不超過(guò)40歲

年齡超過(guò)40歲

合計(jì)

(2)若從網(wǎng)購(gòu)迷中任意選取2名,求其中年齡超過(guò)40歲的市民人數(shù)的分布列與期望.

附: ;

0.15

0.10

0.05

0.01

2.072

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的極值;

(2)當(dāng)時(shí),若存在實(shí)數(shù), 使得不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=1﹣
(1)求證:f(x)是定義域內(nèi)的增函數(shù);
(2)當(dāng)x∈[0,1]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)為奇函數(shù),且在(﹣∞,0)內(nèi)是減函數(shù),f(2)=0,則 <0的解集為(
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,2)∪(0,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0)∪(0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案