【題目】網(wǎng)購是當前民眾購物的新方式,某公司為改進營銷方式,隨機調查了100名市民,統(tǒng)計其周平均網(wǎng)購的次數(shù),并整理得到如下的頻數(shù)分布直方圖.這100名市民中,年齡不超過40歲的有65人將所抽樣本中周平均網(wǎng)購次數(shù)不小于4次的市民稱為網(wǎng)購迷,且已知其中有5名市民的年齡超過40歲.

(1)根據(jù)已知條件完成下面的列聯(lián)表,能否在犯錯誤的概率不超過0.10的前提下認為網(wǎng)購迷與年齡不超過40歲有關?

網(wǎng)購迷

非網(wǎng)購迷

合計

年齡不超過40歲

年齡超過40歲

合計

(2)若從網(wǎng)購迷中任意選取2名,求其中年齡超過40歲的市民人數(shù)的分布列與期望.

附:

0.15

0.10

0.05

0.01

2.072

2.706

3.841

6.635

【答案】(1)詳見解析;(2)詳見解析.

【解析】試題分析:

(1)利用題意繪制列聯(lián)表即可,求得 .所以可以在犯錯誤的概率不超過0.10的前提下認為網(wǎng)購迷與年齡不超過40歲有關;

(2)該分布列為超幾何分布,寫出分布列可得.

試題解析:

(1)由題意可得列聯(lián)表如下:

網(wǎng)購迷

非網(wǎng)購迷

合計

年齡不超過40歲

20

45

65

年齡超過40歲

5

30

35

合計

25

75

100

假設網(wǎng)購迷與年齡不超過40歲沒有關系,

.

所以可以在犯錯誤的概率不超過0.10的前提下認為網(wǎng)購迷與年齡不超過40歲有關;

(2)由頻率分布直方圖可知,網(wǎng)購迷共有25名,由題意得年齡超過40的市民人數(shù)的所有取值為0,1,2,

, ,

的分布列為

0

1

2

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為R,且f(x)不為常值函數(shù),有以下命題:
①函數(shù)g(x)=f(x)+f(﹣x)一定是偶函數(shù);
②若對任意x∈R都有f(x)+f(2﹣x)=0,則f(x)是以2為周期的周期函數(shù);
③若f(x)是奇函數(shù),且對于任意x∈R,都有f(x)+f(2+x)=0,則f(x)的圖象的對稱軸方程為x=2n+1(n∈Z);
④對于任意的x1 , x2∈R,且x1≠x2 , 若>0恒成立,則f(x)為R上的增函數(shù),
其中所有正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有若干(大于20)件某種自然生長的中藥材,從中隨機抽取20件,其重量都精確到克,規(guī)定每件中藥材重量不小于15克為優(yōu)質品.如圖所示的程序框圖表示統(tǒng)計20個樣本中的優(yōu)質品數(shù),其中表示每件藥材的重量,則圖中①,②兩處依次應該填的整數(shù)分別是____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xln(x+ (a>0)為偶函數(shù).
(1)求a的值;
(2)求g(x)=ax2+2x+1在區(qū)間[﹣6,3]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某青少年成長關愛機構為了調研所在地區(qū)青少年的年齡與身高壯況,隨機抽取6歲,9歲,12歲,15歲,18歲的青少年身高數(shù)據(jù)各1000個,根據(jù)各年齡段平均身高作出如圖所示的散點圖和回歸直線.根據(jù)圖中數(shù)據(jù),下列對該樣本描述錯誤的是( )

A. 據(jù)樣本數(shù)據(jù)估計,該地區(qū)青少年身高與年齡成正相關

B. 所抽取數(shù)據(jù)中,5000名青少年平均身高約為

C. 直線的斜率的值近似等于樣本中青少年平均身高每年的增量

D. 從這5種年齡的青少年中各取一人的身高數(shù)據(jù),由這5人的平均年齡和平均身高數(shù)據(jù)作出的點一定在直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線 =1(a>0,b>0)的左右焦點分別為F1 , F2漸近線分別為l1 , l2 , 位于第一象限的點P在l1上,若l2⊥PF1 , l2∥PF2 , 則雙曲線的離心率是(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】集合A={(x,y)|y=a},集合B={(x,y)|y=bx+1,b>0,b≠1},若集合A∩B≠,則實數(shù)a的取值范圍是(
A.(﹣∞,1)
B.(﹣∞,1]
C.[1,+∞)
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D是BC的中點.
(1)求證:A1B∥平面ADC1;
(2)若AB⊥AC,AB=AC=1,AA1=2,求幾何體ABD﹣A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={x|2a﹣1≤x≤a+3},集合B={x|x<﹣1或x>5}.
(1)當a=﹣2時,求A∩B;
(2)若AB,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案