已知數(shù)列的奇數(shù)項是首項為1的等差數(shù)列,偶數(shù)項是首項為2的等比數(shù)列.數(shù)列 前項和為,且滿足
(1)求數(shù)列的通項公式;
(2)求數(shù)列前項和;
(3)在數(shù)列中,是否存在連續(xù)的三項,按原來的順序成等差數(shù)列?若存在,求出所有滿足條件的正整數(shù)的值;若不存在,說明理由
(1);(2;(3)存在,詳見解析.
解析試題分析:(1)此類問題一般用等差數(shù)列和等比數(shù)列的基本量根據(jù)題目條件布列方程,解之即可,體現(xiàn)的方程的基本思想,解出等差數(shù)列和等比數(shù)列后,便可寫出數(shù)列的通項公式,要注意本題數(shù)列的特點,可將其寫成分段的形式;(2))在求出等差數(shù)列和等比數(shù)列的公差和公比后,求得難度已經(jīng)不大,但要注意分組求和;(3)此類探究性問題,一般先假設(shè)存在符合條件的連續(xù)三項,然后通過推理,求出則存在,若得到矛盾,則不存在,存在時還要注意求出所有符合條件的解,注意分類討論思想的應(yīng)用.
試題解析:(1)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,
則
又,,解得
∴對于,有
故 5分
(2)由(1)知,在數(shù)列中,前項中所有奇數(shù)項的和為,所有偶數(shù)項的和為,所以有 8分
(3)在數(shù)列中,僅存在連續(xù)的三項,按原來的順序成等差數(shù)列,此時正整數(shù)的值為1,下面說明理由 10分
若,則由,得
化簡得,此式左邊為偶數(shù),右邊為奇數(shù),不可能成立 12分
若,則由,得
化簡得 14分
令,則
因此,,故只有,此時
綜上,在數(shù)列中,僅存在連續(xù)的三項,按原來的順序成等差數(shù)列,此時正整數(shù)的值為1 16分
考點:等差數(shù)列、等比數(shù)列,數(shù)列的求和.
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是首項為,公差為的等差數(shù)列,是其前項和.
(1)若,,求數(shù)列的通項公式;
(2)記,,且、、成等比數(shù)列,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前項和為,且是和的等差中項,等差數(shù)列滿足,.
(1)求數(shù)列、的通項公式;
(2)設(shè),數(shù)列的前項和為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前n項和記為Sn,a1=t,點(Sn,an+1)在直線y=2x+1上,n∈N*.
(1)當實數(shù)為何值時,數(shù)列是等比數(shù)列?
(2)在(1)的結(jié)論下,設(shè)是數(shù)列的前項和,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列滿足:,的前n項和為.
(1)求及;
(2)已知數(shù)列的第n項為,若成等差數(shù)列,且,設(shè)數(shù)列的前項和.求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為等差數(shù)列,且,為的前項和.
(Ⅰ)求數(shù)列的通項公式及;
(II)設(shè),求數(shù)列的通項公式及其前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前n項和為,和滿足等式
(Ⅰ)求的值;
(Ⅱ)求證:數(shù)列是等差數(shù)列;
(Ⅲ)若數(shù)列滿足,求數(shù)列的前n項和;
(Ⅳ)設(shè),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}的通項公式為,從數(shù)列{an}中依次取出a1,a2,a4,a8,…,,…,構(gòu)成一個新的數(shù)列{bn},求{bn}的前n項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com