7.已知函數(shù)f(x)=x3-3x2+1.
(1)求f(x)在x=1處的切線方程;
(2)求f(x)的極值.

分析 (1)f'(x)=3x2-6x,f'(1)=-3,f(1)=-1.利用點(diǎn)斜式即可得出切線方程.
(2)由f'(x)=3x2-6x=0,解得:x1=0,x2=2.列出表格即可得出極值.

解答 解:(1)f'(x)=3x2-6x,f'(1)=-3,f(1)=-1.
∴f(x)在x=1處的切線方程是:y+1=-3(x-1),即y=-3x+2.
(2)由f'(x)=3x2-6x=0,解得:x1=0,x2=2.

x(-∞,0)0(0,2)2(2,+∞)
f′(x)+0-0+
f(x)單調(diào)遞增極大值1單調(diào)遞減極小值-3單調(diào)遞增
當(dāng)x=0時(shí)有極大值1,當(dāng)x=2時(shí)有極小值-3.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值、幾何意義、切線方程,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)函數(shù)f(x)=ax2+(b-2)x+3(a≠0),f(x)滿足f(x+1)-f(x)=2x-1
(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)g(x)=f(x)-mx,若對(duì)任意的x1,x2∈[1,2],都有|g(x1)-g(x2)|≤2成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.以BC為底邊的等腰三角形ABC中,AC邊上的中線長(zhǎng)為6,當(dāng)△ABC面積最大時(shí),腰AB長(zhǎng)為( 。
A.6$\sqrt{3}$B.6$\sqrt{5}$C.4$\sqrt{3}$D.4$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.過(guò)拋物線x2=2py(p>0且為常數(shù))的焦點(diǎn)F作斜率為1的直線,交拋物線于A,B兩點(diǎn),求證:線段AB的長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)=2x2-lnx,x∈(0,+∞)的單調(diào)減區(qū)間為(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5),
(1)求f(x)的解析式;
(2)若對(duì)于任意x∈[-1,1],不等式f(x)+t≤2恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓C中心在原點(diǎn),左焦點(diǎn)為F(-$\sqrt{3}$,0),右頂點(diǎn)為A(2,0),設(shè)點(diǎn)B(3,0).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若P是橢圓C上的動(dòng)點(diǎn),求線段PB中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知x,y滿足$\left\{\begin{array}{l}y≥x\\ x+y≤4\\ x≥1\end{array}\right.$,則$\frac{{{y^2}-2xy+3{x^2}}}{x^2}$的取值范圍為( 。
A.[2,6]B.[2,4]C.[1,6]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知f(x)=ax2-bx+1是定義域?yàn)閇a,a+1]的偶函數(shù),則a+ab=(  )
A.0B.$\frac{3}{4}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案