(本題滿分18分,第(1)小題4分,第(2)小題8分,第(3)小題6分)
已知雙曲線的一個焦點是,且
(1)求雙曲線的方程;
(2)設經(jīng)過焦點的直線的一個法向量為,當直線與雙曲線的右支相交于不同的兩點時,求實數(shù)的取值范圍;并證明中點在曲線上.
(3)設(2)中直線與雙曲線的右支相交于兩點,問是否存在實數(shù),使得為銳角?若存在,請求出的范圍;若不存在,請說明理由.
(1)
(2),證明見解析
(3)不存在
(本題滿分18分,第(1)小題4分,第(2)小題8分,第(3)小題6分)
解:(1)        
所以:雙曲線……4分
(2)


恒成立……6分
       
……8分
,則  
……10分
……12分
(3)設 設存在實數(shù),使為銳角,
 ……14分
因為
……16分
  即 
,與矛盾   不存在……18分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖所示,橢圓C 的兩個焦點為、,短軸兩個端點為、.已知、 成等比數(shù)列,,與 軸不垂直的直線 與C 交于不同的兩點、,記直線的斜率分別為、,且
(Ⅰ)求橢圓 的方程;
(Ⅱ)求證直線 與 軸相交于定點,并求出定點坐標;
(Ⅲ)當弦 的中點落在四邊形 內(nèi)(包括邊界)時,求直線 的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知A(-2,0),B(2,0),動點P與A、B兩點連線的斜率分別為,且滿足·="t" (t≠0且t≠-1).
(1)求動點P的軌跡C的方程;
(2)當t<0時,曲線C的兩焦點為F1,F(xiàn)2,若曲線C上存在點Q使得∠F1QF2=120O,
求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設A(),B()是平面直角坐標系xOy上的兩點,先定義由點A到點B的一種折線距離p(A,B)為.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過點F(0,3),且和直線相切的動圓圓心軌跡方程是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如果直線與圓有公共點,則實數(shù)a的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點是圓上的一個動點,過點軸于點,設,則點的軌跡方程______________;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,分別是雙曲線的左、右焦點,是雙曲線上的一點,若,,構(gòu)成公差為正數(shù)的等差數(shù)列,則的面積為
A.B.C.  D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若雙曲線的一條漸近線方程為,則的值為     。

查看答案和解析>>

同步練習冊答案