【題目】如圖,有一塊半徑為20米,圓心角的扇形展示臺(tái),展示臺(tái)分成了四個(gè)區(qū)域:三角形,弓形,扇形和扇形(其中.某次菊花展依次在這四個(gè)區(qū)域擺放:泥金香、紫龍臥雪、朱砂紅霜、朱砂紅霜.預(yù)計(jì)這三種菊花展示帶來的日效益分別是:泥金香50/,紫龍臥雪30/,朱砂紅霜40/.

1)設(shè),試建立日效益總量關(guān)于的函數(shù)關(guān)系式;

2)試探求為何值時(shí),日效益總量達(dá)到最大值.

【答案】1,其中,.2)當(dāng)時(shí),日效益總量可取得最大值.

【解析】

1)利用扇形面積公式可求出四個(gè)區(qū)域的面積,從而可計(jì)算出日收益.

2)利用導(dǎo)數(shù)可求得日收益的最大值.

1)依題意得,,則

,其中,.

2

,得,

當(dāng),,當(dāng)時(shí),,

所以,是函數(shù)的極大值點(diǎn),且唯一;

從而當(dāng)時(shí),日效益總量可取得最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),試求實(shí)數(shù)的取值范圍;

(2)已知函數(shù),且,若函數(shù)在區(qū)間上恰有3個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,橢圓離心率為、是橢圓C的短軸端點(diǎn),且到焦點(diǎn)的距離為,點(diǎn)M在橢圓C上運(yùn)動(dòng),且點(diǎn)M不與、重合,點(diǎn)N滿足

(1)求橢圓C的方程;

(2)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù)),上的最大值為.

(1)求實(shí)數(shù)的值;

(2)判斷函數(shù)內(nèi)的極值點(diǎn)個(gè)數(shù),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中,均為等邊三角形,,OBC的中點(diǎn).

1)證明:平面平面ABC

2)在棱上確定一點(diǎn)M,使得二面角的大小為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,錯(cuò)誤命題是

A. ,則的逆命題為真

B. 線性回歸直線必過樣本點(diǎn)的中心

C. 在平面直角坐標(biāo)系中到點(diǎn)的距離的和為的點(diǎn)的軌跡為橢圓

D. 在銳角中,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,其焦距為,點(diǎn)在橢圓上,,直線的斜率為為半焦距)·

1)求橢圓的方程;

2)設(shè)圓的切線交橢圓兩點(diǎn)(為坐標(biāo)原點(diǎn)),求證:

3)在(2)的條件下,求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)寫出曲線的普通方程和直線的直角坐標(biāo)方程;

(2)若直線與曲線有兩個(gè)不同交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其圖象相鄰兩條對(duì)稱軸之間的距離為,將該函數(shù)的圖象向左平移個(gè)單位后,得到的圖象對(duì)應(yīng)的函數(shù)為偶函數(shù).下列判斷正確的是( )

A. 函數(shù)的最小正周期為

B. 函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱

C. 函數(shù)的圖象關(guān)于直線對(duì)稱

D. 函數(shù)上單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊(cè)答案