A. | 向左平移$\frac{π}{6}$個單位 | B. | 向右平移$\frac{π}{6}$個單位 | ||
C. | 向左平移$\frac{π}{3}$個單位 | D. | 向右平移$\frac{π}{3}$個單位 |
分析 根據(jù)f($\frac{8π}{3}$-x)=-f(x),求出函數(shù)f(x)的解析式,根據(jù)三角函數(shù)平移變換的規(guī)律求解即可.
解答 解:函數(shù)f(x)=cos(2x+φ),|φ|≤$\frac{π}{2}$,
由$f(\frac{8π}{3}-x)=-f(x)$,
可得cos[2($\frac{8π}{3}$-x)+φ]=-cos(2x+φ),
整理得:cos($\frac{4π}{3}-2x+$φ)=-cos(2x+φ)=cos(π-(2x+φ]
∵φ|≤$\frac{π}{2}$,
∴令$\frac{4π}{3}-2x+$φ=π-(2x+φ)
解得:φ=$-\frac{π}{6}$
故函數(shù)f(x)=cos(2x$-\frac{π}{6}$)=sin(2x$-\frac{π}{6}$+$\frac{π}{2}$)=sin(2x$+\frac{π}{3}$)=sin2(x$+\frac{π}{6}$)
向右平移$\frac{π}{6}$個單位可得到sin2x.
故選B.
點評 本題考查了函數(shù)f(x)的解析式的確定以及平移變換的規(guī)律.屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
商店名稱 | A | B | C | D | E |
銷售額x(千萬元) | 3 | 5 | 6 | 7 | 9 |
利潤額y(百萬元) | 2 | 3 | 3 | 4 | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow a+\overrightarrow b+\overrightarrow c$ | B. | $\overrightarrow a-\overrightarrow b+\overrightarrow c$ | C. | $\overrightarrow a+\overrightarrow b-\overrightarrow c$ | D. | $-\overrightarrow a+\overrightarrow b+\overrightarrow c$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{4}{27}$ | B. | -$\frac{2}{27}$ | C. | $\frac{2}{27}$ | D. | $\frac{4}{27}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{5}{2}$ | C. | $\frac{9}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com