20.設(shè)函數(shù)f(x)是定義在(-∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f'(x),且有2f(x)+xf'(x)>x2,則不等式(x+2016)2f(x+2016)-9f(-3)<0的解集為( 。
A.(-2019,-2016)B.(-2019,2016)C.(-2019,+∞)D.(-∞,-2019)

分析 通過觀察2f(x)+xf′(x)>x2,不等式的左邊像一個(gè)函數(shù)的導(dǎo)數(shù),又直接寫不出來,對該不等式兩邊同乘以x,得到2xf(x)+x2f′(x)<x3,這時(shí)不等式的左邊是(x2f(x))′,所以構(gòu)造函數(shù)F(x)=x2f(x),則能判斷該函數(shù)在(-∞,0)上是減函數(shù);
再由F(x+2016)=(x+2016)2f(x+2016),F(xiàn)(-3)=9f(-3),且不等式(x+2016)2f(x+2016)-9f(-3)<0可變成F(x+2014)<F(-3),解這個(gè)不等式即可,這個(gè)不等式利用F(x)的單調(diào)性可以求解.

解答 解:由2f(x)+xf′(x)>x2,(x<0);
得:2xf(x)+x2f′(x)<x3
即[x2f(x)]′<x3<0;
令F(x)=x2f(x);
則當(dāng)x<0時(shí),F(xiàn)'(x)<0,即F(x)在(-∞,0)上是減函數(shù);
∴F(x+2016)=(x+2016)2f(x+2016),F(xiàn)(-3)=9f(-3);
即不等式等價(jià)為F(x+2016)-F(-3)<0;
∵F(x)在(-∞,0)是減函數(shù);
∴由F(x+2016)<F(-3)得,x+2016>-3,∴x>-2019;
又x+2016<0,∴x<-2016;
∴-2019<x<-2016.
∴原不等式的解集是(-2019,-2016).
故選:A.

點(diǎn)評 本題考查函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,兩個(gè)函數(shù)乘積的導(dǎo)數(shù)的求法,而構(gòu)造函數(shù)是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知$\overrightarrow a$=(2cos$\frac{2π}{3}$,2sin$\frac{2π}{3}$),$\overrightarrow{OA}$=$\overrightarrow a$-$\overrightarrow b$,$\overrightarrow{OB}$=$\overrightarrow a$+$\overrightarrow b$,若△OAB是以O(shè)為直角頂點(diǎn)的等腰直角三角形,則△OAB的面積等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x+1|+|mx-1|.
(1)若m=1,求f(x)的最小值,并指出此時(shí)x的取值范圍;
(2)若f(x)≥2x,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)已知一圓過P(4,-2),Q(-1,3)兩點(diǎn),且在y軸上截得的線段長4$\sqrt{3}$的圓,求圓的方程;
(2)求圓心在直線x+y=0上,且過兩圓x2+y2-2x+10y-24=0與x2+y2+2x+2y-8=0的交點(diǎn)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知一組數(shù)據(jù)x1,x2,…,xn的平均值為2,方差為1,則2x1+1,2x2+1,…,2xn+1平均值方差分別為(  )
A.5,4B.5,3C.3,5D.4,5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,圓O的半徑為1,A是圓上的定點(diǎn),P是圓上的動點(diǎn),角x的始邊為射線OA,終邊為射線OP,過點(diǎn)P作直線OA的垂線,垂足為M,將點(diǎn)M到直線OP的距離與O到M的距離之和表示成x的函數(shù)f(x),則y=f(x)在[0,π]上的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=$\frac{1}{2x+1}$,x∈[1,4]的最小值是$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知點(diǎn)P是橢圓$\frac{x^2}{9}$+$\frac{y^2}{5}$=1上任意一點(diǎn),F(xiàn)是其右焦點(diǎn),O是坐標(biāo)原點(diǎn),則$\frac{{|{PO}|}}{{|{PF}|}}$的最大值為( 。
A.4B.3C.$\frac{3}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,角A、B、C所對的邊分別是a,b,c,且sinA>sinC,已知$\overrightarrow{AB}$•$\overrightarrow{BC}$=-2,cosB=$\frac{1}{3}$,b=3.
(1)求a與c;      
 (2)求cos(B-C)的值.

查看答案和解析>>

同步練習(xí)冊答案