4.某空間幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{8-π}{3}$.

分析 由三視圖知該組合體是:一個四棱錐沿著右側面挖去一個半圓錐得到的,由三視圖求出幾何元素的長度,由錐體的體積公式求出幾何體的體積.

解答 解:由三視圖知該幾何體的直觀圖為:
即從四棱錐P-ABCD中挖去了一個半圓錐所得的組合體,
∵四棱錐P-ABCD底面是邊長為2的正方形、高為2,
圓錐底面圓的半徑是1、高為2,頂點是P,
∴所求的體積V=$\frac{1}{3}×2×2×2-\frac{1}{2}×\frac{1}{3}×π×{1}^{2}×2$
=$\frac{8-π}{3}$,
故答案為:$\frac{8-π}{3}$.

點評 本題考查三視圖求幾何體的體積,由三視圖正確復原幾何體是解題的關鍵,考查空間想象能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,側棱PD⊥底面ABCD,底面ABCD是直角梯形,AB∥CD,PD=AD=AB=1,CD=2,點E是PA的中點,作EF⊥PB交PB于點F.
(I)求證:PB⊥平面DEF;
(Ⅱ)求二面角E-PB-D的大。
(Ⅲ)在DC上是否存在一點G,使PG∥平面EDB,若存在,求出DG的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,四棱錐P-ABCD的底面ABCD是菱形,且∠ABC=60°,側面PAD是邊長為2的正三角形且與底面ABCD垂直.
(Ⅰ)求證:BC⊥PC;
(Ⅱ)線段PC上是否存在點M,使得二面角P-AD-M的平面角余弦值為$\frac{2\sqrt{5}}{5}$?若存在,求出$\frac{PM}{PC}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.一個幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積為$\frac{38}{3}π$cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.第17屆亞運會2014年9月19日至10月4日在韓國仁川進行,為了搞好接待工作,組委會招募了16名男志愿者和14名女志愿者,調查發(fā)現(xiàn),男、女志愿者中分別有10人和6人喜愛運動,其余人不喜愛運動.
(1)根據(jù)以上數(shù)據(jù)列出2×2列聯(lián)表.
(2)根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.10的前提下認為性別與喜愛運動有關?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.為了增強消防安全意識,某中學對全體學生做了一次消防知識講座,從男生中隨機抽取50人,從女生中隨機抽取70人參加消防知識測試,統(tǒng)計數(shù)據(jù)得到如下列聯(lián)表:
 優(yōu)秀非優(yōu)秀總計
男生153550
女生304070
總計4575120
(Ⅰ)試判斷是否有90%的把握認為消防知識的測試成績優(yōu)秀與否與性別有關;
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.250.150.100.050.0250.010
k01.3232.0722.7063.8415.0246.635
(Ⅱ)為了宣傳消防,從該校測試成績獲得優(yōu)秀的同學中采用分層抽樣的方法,隨機選出6人組成宣傳小組.現(xiàn)從這6人中隨機抽取2人到校外宣傳,求到校外宣傳的同學中男生人數(shù)X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.一個幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積為$\frac{45}{2}$πcm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.微信是騰訊公司推出的一種手機通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出邊風靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內銷售商品的人(被稱為微商),為了調查每天微信用戶用微信的時間,就經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調查結果如下:
 微信控非微信控合計
男性262450
女性302050
合計5644100
(1)根據(jù)以上數(shù)據(jù),能夠有60%的把握認為“微信控”與“性別”有關?
(2)現(xiàn)從調查的女性用戶中按分層抽樣的方法選出5人,從這5人中隨機抽取3人,贈送200元的護膚套裝,求這3人中“微信控”的人數(shù)為2的概率.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
參考數(shù)據(jù):
 P(K2≥k0 0.50 0.400.25 0.05 0.025 0.010
 k0 0.455 0.708 1.321 3.840 5.024 6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某地擬建造一座體育館,其設計方案側面的外輪廓線如圖所示:曲線AB是以點E的圓心的圓的一部分,其中E(0,t)(0<t≤25),GF是圓的切線,且GF⊥AD,曲線BC是拋物線y=-ax2+50(a>0)的一部分,CD⊥AD,且CD恰好等于圓E的半徑.
(1)若CD=30米,AD=24$\sqrt{5}$米,求t與a的值;
(2)若體育館側面的最大寬度DF不超過75米,求a的取值范圍.

查看答案和解析>>

同步練習冊答案