14.某地?cái)M建造一座體育館,其設(shè)計(jì)方案側(cè)面的外輪廓線如圖所示:曲線AB是以點(diǎn)E的圓心的圓的一部分,其中E(0,t)(0<t≤25),GF是圓的切線,且GF⊥AD,曲線BC是拋物線y=-ax2+50(a>0)的一部分,CD⊥AD,且CD恰好等于圓E的半徑.
(1)若CD=30米,AD=24$\sqrt{5}$米,求t與a的值;
(2)若體育館側(cè)面的最大寬度DF不超過75米,求a的取值范圍.

分析 (1)由CD=30米,AD=24$\sqrt{5}$米,代入拋物線的方程,結(jié)合圓的方程,即可解得答案;
(2)問題轉(zhuǎn)化為$\sqrt{\frac{1}{a}}$≤$\sqrt{t}$+$\frac{25}{\sqrt{t}}$恒成立,根據(jù)基本不等式的性質(zhì)解出即可.

解答 解:(1)因?yàn)閳AE的半徑為OB-OE=50-t,所以CD=50-t=30,t=20,
令y=-ax2+50=50-t,得$OD=\sqrt{\frac{t}{a}}$
圓E:x2+(y-20)2=302,令y=0,得$AO=10\sqrt{5}$,
所以$OD=AD-OA=24\sqrt{5}-10\sqrt{5}=14\sqrt{5}$,
即$\sqrt{\frac{t}{a}}=14\sqrt{5}$,又t=20,得$a=\frac{1}{49}$.
(2)$DF=OF+OD=50-t+\sqrt{\frac{t}{a}}$
由題意得:$50-t+\sqrt{\frac{t}{a}}≤75$對t∈(0,25]恒成立,
所以$\sqrt{\frac{1}{a}}≤\sqrt{t}+\frac{25}{{\sqrt{t}}}$恒成立,
當(dāng)$\sqrt{t}=\frac{25}{{\sqrt{t}}}$,即t=25時(shí),${(\sqrt{t}+\frac{25}{{\sqrt{t}}})_{min}}=10$,
所以$\sqrt{\frac{1}{a}}≤10$,解得$a≥\frac{1}{100}$,
故a的取值范圍為[$\frac{1}{100},+∞$)

點(diǎn)評 本題考查了直線和圓的位置關(guān)系,考查三角函數(shù)問題,考查函數(shù)恒成立問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.某空間幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{8-π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知幾何體的三視圖如圖所示,則該幾何體的外接球表面積為( 。
A.B.12πC.24πD.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)f(x)=m-$\frac{4}{{3}^{x}+1}$,其中m為常數(shù)
(Ⅰ)若f(x)為奇函數(shù),試確定實(shí)數(shù)m的值;
(Ⅱ)若不等式f(x)+m>0對一切x∈R恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)關(guān)于某產(chǎn)品的明星代言費(fèi)x(百萬元)和其銷售額y(百萬元),有如表所示的統(tǒng)計(jì)表格.
i12345合計(jì)
xi(百萬元)1.261.441.591.711.827.82
wi(百萬元)2.002.994.025.006.0320.04
yi(百萬元)3.204.806.507.508.0030.00
$\overline{x}$=1.56,$\overline{w}$=4.01,$\overline{y}$=6,$\sum_{i=1}^{5}$xiyi=48.66,$\sum_{i=1}^{5}$wiyi=132.62,$\sum_{i=1}^{5}$(xi-$\overline{x}$)2=0.20,$\sum_{i=1}^{5}$(wi-$\overline{w}$)2=10.14
表中wi=xi3(i=1,2,3,4,5)(以下計(jì)算過程中的數(shù)據(jù)統(tǒng)一保留到小數(shù)點(diǎn)后第2位).
(1)在坐標(biāo)系中,做出銷售額y關(guān)于明星代言費(fèi)x的回歸類方程的散點(diǎn)圖;
(2)根據(jù)散點(diǎn)圖指出:y=a+blnx,y=c+dx3哪一個(gè)更適合作銷售額y關(guān)于明星代言費(fèi)x的回歸類方程(不需要說明理由);
(3)①已知這種產(chǎn)品的純收益z(百萬元)與x、y有如下關(guān)系:z=0.2y-0.726x(x∈[1.00,2.00]),試寫出z=f(x)的函數(shù)關(guān)系式;
②試估計(jì)當(dāng)x取何值時(shí),純收益z取最大值?
附:對于一組具有線性相關(guān)關(guān)系的數(shù)據(jù)(u1,v1),(u2,v2),…(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計(jì)分別為:$\overline{β}$=$\frac{\sum_{i=1}^{n}{u}_{i}{v}_{i}-n\overline{u}\overline{v}}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\overline{α}$=$\overline{v}$-$\overline{β}$$\overline{u}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{2x-1}{x+1}$.
(1)求f(x)的定義域;
(2)證明函數(shù)f(x)在[1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.函數(shù)f(x)=x2-2lnx,g(x)=2ax-ax2,當(dāng)x∈(1,+∞)時(shí),f(x)>g(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知f(x)的定義域?yàn)椋?,+∞),f'(x)為f(x)的導(dǎo)函數(shù),且滿足f(x)<-xf′(x),則不等式f($\sqrt{x}$+1)>($\sqrt{x}$-1)f(x-1)的解集是( 。
A.(0,4)B.(1,4)C.(1,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)=$\frac{\sqrt{{x}^{2}-(a+1)x+1}}{{x}^{2}-x+1}$定義域?yàn)镽,則實(shí)數(shù)a的取值范圍為( 。
A.[-3,-1]B.[-1,3]C.[1,3]D.[-3,1]

查看答案和解析>>

同步練習(xí)冊答案