13.一光源P在桌面A的正上方,半徑為2的球與桌面相切,且PA與球相切,小球在光源P的中心投影下在桌面產(chǎn)生的投影為一橢圓,如圖所示,形成一個(gè)空間幾何體,且正視圖是Rt△PAB,其中PA=6,則該橢圓的短軸長(zhǎng)為( 。
A.6B.8C.$4\sqrt{3}$D.3

分析 由原空間幾何體作出其左視圖,求解三角形可得左視圖底邊長(zhǎng),即橢圓的短軸長(zhǎng).

解答 解:由題中空間幾何體可得其左視圖為等腰三角形如圖,

其中PG=PA=6,OG為球的半徑為2,則PO=4,又OM=2,可得∠OPM=30°,
∴∠CPD=60°,則△CPD為正三角形,
又PG=6,在Rt△PGD中可得GD=6×$tan30°=6×\frac{\sqrt{3}}{3}=2\sqrt{3}$.
∴該橢圓的短軸長(zhǎng)為2GD=4$\sqrt{3}$.
故選:C.

點(diǎn)評(píng) 本題以中心投影及中心投影作圖法,考查了橢圓的簡(jiǎn)單性質(zhì),同時(shí)考查了橢圓的基本量,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.通過隨機(jī)詢問某地100名高中學(xué)生在選擇座位時(shí)是否挑同桌,得到如下2×2列聯(lián)表:
男生女生合計(jì)
挑同桌304070
不挑同桌201030
總計(jì)5050100
(Ⅰ)從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個(gè)容量為5的樣本,現(xiàn)從這5人中隨機(jī)選取3人做深度采訪,求這3名學(xué)生中至少有2名要挑同桌的概率;
(Ⅱ)根據(jù)以上2×2列聯(lián)表,是否有95%以上的把握認(rèn)為“性別與在選擇座位時(shí)是否挑同桌”有關(guān)?
下面的臨界值表供參考:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow{a}$,$\overrightarrow$為單位向量,且|$\overrightarrow$|=|$\overrightarrow{a}$|=|$\overrightarrow{a}$-$\overrightarrow$|=1,則|2$\overrightarrow{a}$+$\overrightarrow$|=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.右程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的a,b分別為24,39,則輸出的a=( 。
A.2B.3C.4D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知實(shí)數(shù)x、y滿足關(guān)系$\left\{\begin{array}{l}x+y-2≤0\\ x-y+4≥0\\ y≥1\end{array}\right.$,則|$\sqrt{3}x$-y|的最大值為$3\sqrt{3}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|(x-3)(x+1)≤0},B={x|-2<x≤2},則A∩B=( 。
A.[-2,-1]B.[-1,2]C.[-1,1]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)和為Sn,且2Sn=4an-1.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=an•an+1-2,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線方程為y=±$\frac{3}{4}$x,則雙曲線C的離心率為(  )
A.$\frac{{\sqrt{7}}}{2}$B.$\frac{5}{3}$C.$\frac{{\sqrt{7}}}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,則輸出 S的值為( 。
A.-lg9B.-1C.-lg11D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案