2.如圖,四面體ABCD中,O、E分別為BD、BC的中點,且CA=CB=CD=BD=$\sqrt{2}$,AB=AD=1,則異面直線AB與CD所成角的正切值為.(  )
A.$\sqrt{7}$B.$\frac{\sqrt{7}}{8}$C.$\frac{\sqrt{2}}{4}$D.$\sqrt{2}$

分析 取AC的中點M,連結(jié)OM、ME、OE,則直線OE與EM所成的銳角∠OEM就是異面直線AB與CD所成的角,由此能求出異面直線AB與CD所成角的正切值.

解答 解:取AC的中點M,連結(jié)OM、ME、OE,
由E為BC的中點知ME∥AB,OE∥DC,
∴直線OE與EM所成的銳角∠OEM就是異面直線AB與CD所成的角,
在△OME中,EM=$\frac{1}{2}AB$=$\frac{1}{2}$,OE=$\frac{1}{2}DC$=$\frac{\sqrt{2}}{2}$,
∵OM是直角△AOC斜邊AC上的中線,
∴OM=$\frac{1}{2}AC$=$\frac{\sqrt{2}}{2}$,
∴cos∠OEM=$\frac{E{O}^{2}+E{M}^{2}-O{M}^{2}}{2×EO×EM}$=$\frac{\frac{1}{2}+\frac{1}{4}-\frac{1}{2}}{2×\frac{\sqrt{2}}{2}×\frac{1}{2}}$=$\frac{\sqrt{2}}{4}$.
tan∠OEM=$\sqrt{7}$.
∴異面直線AB與CD所成角的正切值為$\sqrt{7}$.
故選:A.

點評 本題考查異面直線所成角的正切值的求法,是中檔題,解題時要認真審題,注意空間能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知A(1,3),B(-5,1),以AB為直徑的圓的標準方程是(  )
A.(x+2)2+(y-2)2=10B.(x+2)2+(y-2)2=40C.(x-2)2+(y+2)2=10D.(x-2)2+(y+2)2=40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.方程ex=2-x的解所在的一個區(qū)間為( 。
A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=|x+1|+|x-a|的最小值為5,則實數(shù)a=4或-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)$f(x)=\left\{\begin{array}{l}|{x+1}|\;,\;\;x≤-1\\ 2x\;,\;\;-1<x<2\\ x-1\;,\;\;x≥2\end{array}\right.$,則f[f(-2)]=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求下列各式的值:
(1)${2^{4+{{log}_2}3}}$
(2)${0.064^{-\frac{1}{3}}}-{(-\frac{7}{8})^0}+{[{(-2)^3}]^{-\frac{4}{3}}}+{16^{-0.75}}+{0.01^{\frac{1}{2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.直線y=5與y=-1在區(qū)間$[{0\;,\;\;\frac{4π}{ω}}]$上截曲線$y=msin\frac{ω}{2}x+n({m>0\;,\;\;n>0})$所得弦長相等且不為零,則下列描述正確的是( 。
A.$m≤\frac{3}{2}\;,\;\;n=\frac{5}{2}$B.m≤3,n=2C.$m>\frac{3}{2}$D.m>3,n=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a=${4}^{\frac{1}{2}}$,b=${2}^{\frac{1}{3}}$,c=${5}^{\frac{1}{2}}$,則a、b、c的大小關(guān)系為( 。
A.b<a<cB.a<b<cC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知集合 M={(x,y)|y=$\sqrt{25-{x}^{2}}$,y≠0},N={(x,y)|y=-x+b},若M∩N≠∅,則實數(shù)b的取值范圍是(-5,5$\sqrt{2}$].

查看答案和解析>>

同步練習(xí)冊答案