斜率為1的直線l與橢圓
x2
4
+y2=1相交于A,B兩點(diǎn),則|AB|得最大值為
 
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題,橢圓的應(yīng)用
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)出直線的方程,代入橢圓方程中消去y,根據(jù)判別式大于0求得t的范圍,進(jìn)而利用弦長(zhǎng)公式求得|AB|的表達(dá)式,利用t的范圍求得|AB|的最大值.
解答: 解:設(shè)直線l的方程為y=x+t,代入橢圓
x2
4
+y2=1消去y得
5
4
x2+2tx+t2-1=0,
由題意得△=(2t)2-5(t2-1)>0,即t2<5.
弦長(zhǎng)|AB|=4
2
×
5-t2
5
4
10
5
.當(dāng)t=0時(shí)取最大值.
故答案為:
4
10
5
點(diǎn)評(píng):本題主要考查了橢圓的應(yīng)用,直線與橢圓的關(guān)系.常需要把直線與橢圓方程聯(lián)立,利用韋達(dá)定理,判別式找到解決問(wèn)題的突破口.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x+
π
6
)
,x∈[0,
π
2
]
,則函數(shù)f(x)的值域?yàn)?div id="fkubssk" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|
1
2
x+1|+|x|(x∈R)的最小值為a.
(I)求a;
(Ⅱ)已知兩個(gè)正數(shù)m,n滿足m2+n2=a,求
1
m
+
1
n
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了得到y(tǒng)=cos(2x+
1
3
)函數(shù)的圖象,只需將余弦函數(shù)曲線上所有的點(diǎn)( 。
A、先向右平移
1
3
個(gè)長(zhǎng)度單位,再把橫坐標(biāo)擴(kuò)大到原來(lái)的2倍,縱坐標(biāo)不變
B、先向左平移
1
3
個(gè)長(zhǎng)度單位,再把橫坐標(biāo)縮短到原來(lái)的
1
2
倍,縱坐標(biāo)不變
C、先向左平移
1
3
個(gè)長(zhǎng)度單位,再把橫坐標(biāo)擴(kuò)大到原來(lái)的2倍,縱坐標(biāo)不變
D、先向右平移
1
3
個(gè)長(zhǎng)度單位,再把橫坐標(biāo)縮短到原來(lái)的
1
2
倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖所示的程序框圖,如果輸出的函數(shù)值在區(qū)間[
1
4
,
1
2
]內(nèi),則輸入的實(shí)數(shù)x的取值范圍是( 。
A、(-∞,-2)
B、[-2,-1]
C、[-1,2]
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知
b
a+c
=1-
sinC
sinA+sinB
,且b=5,
CA
CB
=-5
,則△ABC的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司在甲、乙、丙、丁四個(gè)地區(qū)分別有150個(gè)、120個(gè)、180個(gè)、150個(gè)銷售點(diǎn).為調(diào)查產(chǎn)品的銷售情況,現(xiàn)進(jìn)行兩種調(diào)查:①?gòu)倪@600個(gè)銷售點(diǎn)中抽取一個(gè)容量為100的樣本;②在丙地區(qū)中有20個(gè)特大型銷售點(diǎn),要從中抽取7個(gè)調(diào)查其銷售收入和售后服務(wù)情況,則完成①、②這兩項(xiàng)調(diào)查宜采用的抽樣方法依次是( 。
A、分層抽樣法,系統(tǒng)抽樣法
B、分層抽樣法,簡(jiǎn)單隨機(jī)抽樣法
C、系統(tǒng)抽樣法,分層抽樣法
D、簡(jiǎn)單隨機(jī)抽樣法,分層抽樣法

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A、∠B、∠C的對(duì)邊分別為a、b、c,已知bcosB=acosA,則△ABC的形狀是( 。
A、等腰三角形
B、直角三角形
C、等腰直角三角形
D、等腰三角形或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,a2a3a7=8,則a4=( 。
A、1
B、4
C、2
D、2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案