20.已知復數(shù)z滿足z=i(1-i)(其中i為虛數(shù)單位),則z的虛部為( 。
A.1B.-1C.iD.-i

分析 直接由復數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:z=i(1-i)=1+i,
則z的虛部為:1.
故選:A.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.研究性學習小組要從6名(其中男生4人,女生2人)成員中任意選派3人去參加某次社會調(diào)查.
(Ⅰ)在男生甲被選中的情況下,求女生乙也被選中的概率;
(Ⅱ)設所選3人中女生人數(shù)為ξ,求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列函數(shù)中,周期為π,且以直線x=$\frac{π}{3}$為對稱軸的是( 。
A.$y=sin(\frac{x}{2}+\frac{π}{3})$B.$y=sin(2x-\frac{π}{6})$C.$y=cos(2x-\frac{π}{6})$D.$y=tan(x+\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設函數(shù)f(x)=$\frac{\sqrt{3}cosθ}{6}$x3+$\frac{sinθ}{4}$x2+$\frac{1}{tanθ}$,其中θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),則導數(shù)f′(1)的取值范圍是( 。
A.(-$\frac{1}{2}$,1]B.(-$\frac{1}{2}$,1)C.(-$\frac{1}{2}$,$\frac{1}{2}$)D.(-$\frac{1}{2}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設鐵路AB長為100,BC⊥AB,且BC=30,為將貨物從A運往C,現(xiàn)在AB上距點B為x的點M處修一公路至C,已知單位距離的鐵路運費為2,公路運費為4.
(1)將總運費y表示為x的函數(shù);
(2)如何選點M才使總運費最小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.sin300°+tan600°的值是  ( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$+$\sqrt{3}$D.$\frac{1}{2}$+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{1}{2}{cos^2}x+\frac{{\sqrt{3}}}{2}$sinxcosx+1.
(1)求函數(shù)f(x)的最小正周期和其圖象對稱中心的坐標;
(2)求函數(shù)f(x)在$[\frac{π}{12},\frac{π}{4}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知曲線y=(1-x)xn(n∈N*)在$x=\frac{1}{2}$處的切線為l,直線l在y軸上上的截距為bn,則數(shù)列{bn}的通項公式為bn=(2-n)($\frac{1}{2}$)n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點為F,上頂點為A,若直線AF與圓O:x2+y2=$\frac{{3{a^2}}}{16}$相離,則該橢圓離心率的取值范圍是( 。
A.$(0,\frac{1}{2})$B.$(\frac{1}{2},\frac{{\sqrt{3}}}{2})$C.$(\frac{1}{2},1)$D.$(\frac{{\sqrt{3}}}{2},1)$

查看答案和解析>>

同步練習冊答案