已知F1,F(xiàn)2是橢圓
x2
4
+
y2
2
=1
的兩個焦點,P是橢圓上的點,若
PF1
PF2
=0
,則這樣的點P有(  )
A、2個B、4個C、6個D、0個
分析:
PF1
PF2
=0
,可得PF1⊥PF2,再利用橢圓的定義及勾股定理求解.
解答:解:由題意,PF1⊥PF2,設(shè)PF1=m,PF2=n,所以
m+n=4
m2+n2=8
,即n2-4n+4=0,∴n=2,故選A.
點評:本題主要考查橢圓定義的應(yīng)用,及向量知識的等價轉(zhuǎn)化,考查勾股定理得運用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點,若在橢圓上存在一點P,使∠F1PF2=120°,則橢圓離心率的范圍是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是橢圓
y2
a2
+
x2
b2
=1(a>b>0)
的兩個焦點,若橢圓上存在點P使得∠F1PF2=120°,求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是橢圓的兩個焦點.△F1AB為等邊三角形,A,B是橢圓上兩點且AB過F2,則橢圓離心率是
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知 F1、F2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點,橢圓上存在一點P,使得SF1PF2=
3
b2
,則該橢圓的離心率的取值范圍是
[
3
2
,1)
[
3
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
2
+y2=1
的兩個焦點,點P是橢圓上一個動點,那么|
PF1
+
PF2
|
的最小值是( 。

查看答案和解析>>

同步練習(xí)冊答案